60 research outputs found

    Boosting Heterologous Phenazine Production in Pseudomonas putida KT2440 Through the Exploration of the Natural Sequence Space

    Get PDF
    Phenazine-1-carboxylic acid (PCA) and its derivative pyocyanin (PYO) are natural redox mediators in bioelectrochemical systems and have the potential to enable new bioelectrochemical production strategies. The native producer Pseudomonas aeruginosa harbours two identically structured operons in its genome, which encode the enzymes responsible for PCA synthesis (phzA1-G1 (operon 1), phzA2-G2 (operon 2)). To optimize heterologous phenazines production in the biotech host Pseudomonas putida KT2440, we compared PCA production from both operons originating from P. aeruginosa strain PAO1 (O1.phz1 and O1.phz2) as well as from P. aeruginosa strain PA14 (14.phz1 and 14.phz2). Comparisons of phenazine synthesis and bioelectrochemical activity were performed between heterologous constructs with and without the combination with the genes phzM and phzS required to convert PCA to PYO. Despite a high amino acid homology of all enzymes of more than 97 %, P. putida harbouring 14.phz2 produced 4-times higher PCA concentrations (80 μg/mL), which resulted in 3-times higher current densities (12 µA/cm2) compared to P. putida 14.phz1. The respective PCA/PYO producer containing the 14.phz2 operon was the best strain with 80 μg/mL PCA, 11 μg/mL PYO, and 22 µA/cm2 current density. Tailoring phenazine production also resulted in improved oxygen-limited metabolic activity through enhanced anodic electron discharge. To elucidate the reason for this superior performance, a detailed structure comparison of the PCA-synthesizing proteins has been performed. The here presented characterization and optimization of these new strains will be useful to improve electroactivity in P. putida for oxygen-limited biocatalysis

    Novel insights into biosynthesis and uptake of rhamnolipids and their precursors

    Get PDF
    The human pathogenic bacterium Pseudomonasaeruginosa produces rhamnolipids, glycolipids with functionsfor bacterial motility, biofilm formation, and uptake of hydrophobicsubstrates. Rhamnolipids represent a chemically heterogeneousgroup of secondary metabolites composed of one ortwo rhamnose molecules linked to one or mostly two 3-hydroxyfatty acids of various chain lengths. The biosyntheticpathway involves rhamnosyltransferase I encoded by the rhlABoperon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoicacids (HAAs) followed by their coupling to one rhamnose moiety.The resulting mono-rhamnolipids are converted to dirhamnolipidsin a third reaction catalyzed by therhamnosyltransferase II RhlC. However, the mechanism behindthe biosynthesis of rhamnolipids containing only a singlefatty acid is still unknown. To understand the role of proteinsinvolved in rhamnolipid biosynthesis the heterologous expressionof rhl-genes in non-pathogenic Pseudomonas putidaKT2440 strains was used in this study to circumvent the complexquorum sensing regulation in P. aeruginosa. Our resultsreveal that RhlA and RhlB are independently involved inrhamnolipid biosynthesis and not in the form of a RhlAB heterodimercomplex as it has been previously postulated.Furthermore, we demonstrate that mono-rhamnolipids providedextracellularly as well as HAAs as their precursors are generallytaken up into the cell and are subsequently converted todi-rhamnolipids by P. putida and the native host P. aeruginosa.Finally, our results throw light on the biosynthesis ofrhamnolipids containing one fatty acid,which occurs by hydrolyzationof typical rhamnolipids containing two fatty acids,valuable for the production of designer rhamnolipids with desiredphysicochemical properties

    'How to know what you need to do': a cross-country comparison of maternal health guidelines in Burkina Faso, Ghana and Tanzania

    Get PDF
    Initiatives to raise the quality of care provided to mothers need to be given priority in Sub Saharan Africa (SSA). The promotion of clinical practice guidelines (CPGs) is a common strategy, but their implementation is often challenging, limiting their potential impact. Through a cross-country perspective, this study explored CPGs for maternal health in Burkina Faso, Ghana, and Tanzania. The objectives were to compare factors related to CPG use including their content compared with World Health Organization (WHO) guidelines, their format, and their development processes. Perceptions of their availability and use in practice were also explored. The overall purpose was to further the understanding of how to increase CPGs' potential to improve quality of care for mothers in SSA. The study was a multiple case study design consisting of cross-country comparisons using document review and key informant interviews. A conceptual framework to aid analysis and discussion of results was developed, including selected domains related to guidelines' implementability and use by health workers in practice in terms of usability, applicability, and adaptability. The study revealed few significant differences in content between the national guidelines for maternal health and WHO recommendations. There were, however, marked variations in the format of CPGs between the three countries. Apart from the Ghanaian and one of the Tanzanian CPGs, the levels of both usability and applicability were assessed as low or medium. In all three countries, the use of CPGs by health workers in practice was perceived to be limited. Our cross-country study suggests that it is not poor quality of content or lack of evidence base that constitute the major barrier for CPGs to positively impact on quality improvement in maternal care in SSA. It rather emphasises the need to prioritise the format of guidelines to increase their usability and applicability and to consider these attributes together with implementation strategies as integral to their development processes

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society

    Get PDF
    Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.http://www.wileyonlinelibrary.com/journal/mbt2hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-01:No povertySDG-02:Zero HungerSDG-03:Good heatlh and well-beingSDG-04:Quality EducationSDG-06:Clean water and sanitationSDG-07:Affordable and clean energySDG-08:Decent work and economic growthSDG-12:Responsible consumption and productionSDG-13:Climate actionSDG-14:Life below wate

    HAS operon of streptococcus zooepidemicus : composition, origin and stability

    No full text
    • …
    corecore