2 research outputs found

    Evidence for involvement of IL-9 and IL-22 in cows’ milk allergy in infants

    Get PDF
    Although allergic inflammation is characterized by a T helper (Th) 2-dominant immune response, the discovery of a role for new T cell subsets in inflammatory diseases has added an additional layer of complexity to the understanding of the pathogeneses of allergic diseases. We evaluated plasma cytokine profiles in infants with cows’ milk allergy (CMA), who were being treated with an elimination diet. In a prospective, randomized and controlled study, infants (aged 8.4 ± 3.9 months) with CMA were treated with an elimination diet for 120 days, which replaced cows’ milk with a hydrolysed soy protein formula (n = 26) or a free amino acid formula (n = 20). Blood samples were collected before treatment during active disease (T0) and after 120 days, when symptoms were absent (T1). Plasma cytokine concentrations were measured. Infants with CMA had higher plasma concentrations of interleukin (IL)-4 and IL-13 and lower concentrations of IL-9, IL-17A and interferon-γ, compared with healthy breast-fed infants. At T0, there was a positive correlation between blood eosinophil numbers and plasma concentrations of IL-4, IL-9, IL-17A and IL-22. Treatment with a cows’ milk elimination diet resulted in a decrease in plasma IL-4, IL-9, IL-13 and IL-22 and an increase in plasma IL-17A. We conclude that IL-4 and IL-13 are elevated in active CMA. The association of IL-9 and IL-22 with eosinophilia, and the decrease in these two cytokines with cows’ milk elimination, suggests that they both play a role in the symptoms observed in CMA and may be important targets for future intervention

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore