17 research outputs found

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19

    Get PDF
    The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models

    Global Climate [in “State of the Climate in 2019"]

    Get PDF
    International audienceGlobal Climate is one chapter from the State of the Climate in 2019 annual report and is avail- able from https://doi.org/10.1175/BAMS-D-20-0104.1 Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contributions from scien- tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru- ments located on land, water, ice, and in space.The full report is available from https://doi.org/10.1175/2020BAMSStateoftheClimate.1

    Global climate

    No full text

    Global Climate

    Get PDF
    In 2021, both social and economic activities began to return towards the levels preceding the COVID-19 pandemic for some parts of the globe, with others still experiencing restrictions. Meanwhile, the climate has continued to respond to the ongoing increase in greenhouse gases and resulting warming. La Niña, a phenomenon which tends to depress global temperatures while changing rainfall patterns in many regions, prevailed for all but two months of the year. Despite this, 2021 was one of the six-warmest years on record as measured by global mean surface temperature with an anomaly of between +0.21° and +0.28°C above the 1991–2020 climatology. Lake surface temperatures were their highest on record during 2021. The number of warm days over land also reached a new record high. Exceptional heat waves struck the Pacific Coast of North America, leading to a new Canadian maximum temperature of 49.6°C at Lytton, British Columbia, on 29 June, breaking the previous national record by over 4°C. In Death Valley, California, the peak temperature reached 54.4°C on 9 July, equaling the temperature measured in 2020, and the highest temperature recorded anywhere on the globe since at least the 1930s. Over the Mediterranean, a provisional new European record of 48.8°C was set in Sicily on 11 August. In the atmosphere, the annual mean tropospheric temperature was among the 10 highest on record, while the stratosphere continued to cool. While La Niña was present except for June and July, likely influencing Australia’s coolest year since 2012 and wettest since 2016, other modes of variability played important roles. A negative Indian Ocean dipole event became established during July, associated with a warmer east and cooler west Indian Ocean. Northern Hemisphere winters were affected by a negative phase of the North Atlantic Oscillation at both the beginning and end of 2021. In the Southern Hemisphere, a very strong positive Southern Annular Mode (also known as the Antarctic Oscillation) contributed to New Zealand’s record warm year and to very cold temperatures over Antarctica. Land surface winds continued a slow reversal from the multi-decadal stilling, and over the ocean wind speeds were at their highest in almost a decade. La Niña conditions had a clear influence on the regional patterns of many hydrological variables. Surface specific humidity and total column water vapor over land and ocean were higher than average in almost all datasets. Relative humidity over land reached record or near-record low saturation depending on the dataset, but with mixed signals over the ocean. Satellite measurements showed that 2021 was the third cloudiest in the 19-year record. The story for precipitation was mixed, with just below-average mean precipitation falling over land and below-average mean precipitation falling over the ocean, while extreme precipitation was generally more frequent, but less intense, than average. Differences between means and extremes can be due to several factors, including using different indices, observing periods, climatological base reference periods, and levels of spatial completeness. The sharp increase in global drought area that began in mid-2019 continued in 2021, reaching a peak in August with 32% of global land area experiencing moderate or worse drought, and declining slightly thereafter. Arctic permafrost temperatures continued to rise, reaching record values at many sites, and the thickness of the layer which seasonally thaws and freezes also increased over 2020 values in a number of regions. It was the 34th-consecutive year of mass balance loss for alpine glaciers in mountainous regions, with glaciers on average 25 m thinner than in the late 1970s. And the duration of lake ice in the Northern Hemisphere was the fourth lowest in situ record dating back to 1991. The atmospheric concentrations of the major long-lived greenhouse gases, CO2, CH4, and N2O, all reached levels not seen in at least the last million years and grew at near-record rates in 2021. La Niña conditions did not appear to have any appreciable impact on their growth rates. The growth rate for CH4, of 17 ppb yr−1, was similar to that for 2020 and set yet another record, although the causes for this post-2019 acceleration are unknown presently. Overall, CO2 growth continues to dominate the increase in global radiative forcing, which increased from 3.19 to 3.23 W m−2 (watts per square meter) during the year. In 2021, stratospheric ozone did not exhibit large negative anomalies, especially near the poles, unlike 2020, where large ozone depletions appeared, mainly from dynamical effects. The positive impact of reductions in emissions of ozone depleting substances can be seen most clearly in the upper stratosphere, where such dynamical effects are less pronounced. It was the fourth-lowest fire year since global records began in 2003, though extreme regional fire activity was again seen in North America and also in Siberia; as in 2020, the effects of wildfires in these two regions led to locally large regional positive anomalies in tropospheric aerosol and carbon monoxide abundance. Vegetation is responding to the higher global mean temperatures, with the satellite-derived measures for the Northern Hemisphere for 2021 rated among the earliest starts of the growing season and the latest end of the season on record. The first bloom date for cherry trees in Kyoto, Japan, broke a 600-year record set in 1409. This year we welcome a sidebar on the global distribution of lightning, which has been recently declared an essential climate variable (ECV) by the Global Climate Observing System (GCOS). Time series and anomaly maps from many of the variables described in this chapter can be found in Plates 1.1 and 2.1. As with other chapters, many of the sections have moved from the previous 1981–2010 to the new 1991–2020 climatological reference period, in line with WMO recommendations (see Chapter 1). This is not possible for all datasets, as it is dependent on their length of record or legacy processing methods. While anomalies from the new climatology period are not so easily comparable with previous editions of this report, they more clearly highlight deviations from more recent conditions

    State of the climate in 2015

    No full text
    In 2015, the dominant greenhouse gases released into Earth\u2019s atmosphere\u2014carbon dioxide, methane, and nitrous oxide\u2014all continued to reach new high levels. At Mauna Loa, Hawaii, the annual CO2 concentration increased by a record 3.1 ppm, exceeding 400 ppm for the first time on record. The 2015 global CO2 average neared this threshold, at 399.4 ppm. Additionally, one of the strongest El Ni\uf1o events since at least 1950 developed in spring 2015 and continued to evolve through the year. The phenomenon was far reaching, impacting many regions across the globe and affecting most aspects of the climate system. Owing to the combination of El Ni\uf1o and a long-term upward trend, Earth observed record warmth for the second consecutive year, with the 2015 annual global surface temperature surpassing the previous record by more than 0.1\ub0C and exceeding the average for the mid- to late 19th century\u2014commonly considered representative of preindustrial conditions\u2014by more than 1\ub0C for the first time. Above Earth\u2019s surface, lower troposphere temperatures were near-record high. Across land surfaces, record to near-record warmth was reported across every inhabited continent. Twelve countries, including Russia and China, reported record high annual temperatures. In June, one of the most severe heat waves since 1980 affected Karachi, Pakistan, claiming over 1000 lives. On 27 October, Vredendal, South Africa, reached 48.4\ub0C, a new global high temperature record for this month. In the Arctic, the 2015 land surface temperature was 1.2\ub0C above the 1981\u20132010 average, tying 2007 and 2011 for the highest annual temperature and representing a 2.8\ub0C increase since the record began in 1900. Increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 25 February 2015, the lowest maximum sea ice extent in the 37-year satellite record was observed, 7% below the 1981\u20132010 average. Mean sea surface temperatures across the Arctic Ocean during August in ice-free regions, representative of Arctic Ocean summer anomalies, ranged from ~0\ub0C to 8\ub0C above average. As a consequence of sea ice retreat and warming oceans, vast walrus herds in the Pacific Arctic are hauling out on land rather than on sea ice, raising concern about the energetics of females and young animals. Increasing temperatures in the Barents Sea are linked to a community-wide shift in fish populations: boreal communities are now farther north, and long-standing Arctic species have been almost pushed out of the area. Above average sea surface temperatures are not confined to the Arctic. Sea surface temperature for 2015 was record high at the global scale; however, the North Atlantic southeast of Greenland remained colder than average and colder than 2014. Global annual ocean heat content and mean sea level also reached new record highs. The Greenland Ice Sheet, with the capacity to contribute ~7 m to sea level rise, experienced melting over more than 50% of its surface for the first time since the record melt of 2012. Other aspects of the cryosphere were remarkable. Alpine glacier retreat continued, and preliminary data indicate that 2015 is the 36th consecutive year of negative annual mass balance. Across the Northern Hemisphere, late-spring snow cover extent continued its trend of decline, with June the second lowest in the 49-year satellite record. Below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska, increasing by up to 0.66\ub0C decade\u20131 since 2000. In the Antarctic, surface pressure and temperatures were lower than the 1981\u20132010 average for most of the year, consistent with the primarily positive southern annular mode, which saw a record high index value of +4.92 in February. Antarctic sea ice extent and area had large intra-annual variability, with a shift from record high levels in May to record low levels in August. Springtime ozone depletion resulted in one of the largest and most persistent Antarctic ozone holes observed since the 1990s. Closer to the equator, 101 named tropical storms were observed in 2015, well above the 1981\u20132010 average of 82. The eastern/central Pacific had 26 named storms, the most since 1992. The western north Pacific and north and south Indian Ocean basins also saw high activity. Globally, eight tropical cyclones reached the Saffir\u2013Simpson Category 5 intensity level. Overlaying a general increase in the hydrologic cycle, the strong El Ni\uf1o enhanced precipitation variability around the world. An above-normal rainy season led to major floods in Paraguay, Bolivia, and southern Brazil. In May, the United States recorded its all-time wettest month in its 121-year national record. Denmark and Norway reported their second and third wettest year on record, respectively, but globally soil moisture was below average, terrestrial groundwater storage was the lowest in the 14-year record, and areas in \u201csevere\u201d drought rose from 8% in 2014 to 14% in 2015. Drought conditions prevailed across many Caribbean island nations, Colombia, Venezuela, and northeast Brazil for most of the year. Several South Pacific countries also experienced drought. Lack of rainfall across Ethiopia led to its worst drought in decades and affected millions of people, while prolonged drought in South Africa severely affected agricultural production. Indian summer monsoon rainfall was just 86% of average. Extremely dry conditions in Indonesia resulted in intense and widespread fires during August\u2013November that produced abundant carbonaceous aerosols, carbon monoxide, and ozone. Overall, emissions from tropical Asian biomass burning in 2015 were almost three times the 2001\u201314 average
    corecore