2,799 research outputs found

    LHCb results on flavour physics and implications to BSM

    Get PDF
    LHCb is a dedicated flavour physics experiment at the LHC. Precision measurements of CP violation and the study of rare decays of hadrons containing beauty and charm quarks constitute powerful searches for New Physics. A selection of recent LHCb results and their implications to physics beyond the Standard Model are discussed

    A characterization of the wave front set defined by the iterates of an operator with constant coefficients

    Full text link
    [EN] We characterize the wave front set WF*P (u) with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution u is an element of D '(Omega), Omega an open subset in R-n. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type.The authors were partially supported by FAR2011 (Universita di Ferrara), "Fondi per le necessita di base della ricerca" 2012 and 2013 (Universita di Ferrara) and the INDAM-GNAMPA Project 2014 "Equazioni Differenziali a Derivate Parziali di Evoluzione e Stocastiche" The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P.Boiti, C.; Jornet Casanova, D. (2017). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas FĂ­sicas y Naturales Serie A MatemĂĄticas. 111(3):891-919. https://doi.org/10.1007/s13398-016-0329-8S8919191113Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015)Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716)Bolley, P., Camus, J., Mattera, C.: AnalyticitĂ© microlocale et itĂ©rĂ©s d’operateurs hypoelliptiques. In: SĂ©minaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., PalaiseauBonet, J., FernĂĄndez, C., Meise, R.: Characterization of the ω\omega ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000)Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)FernĂĄndez, C., Galbis, A., Jornet, D.: ω\omega ω -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297, 561–576 (2004)FernĂĄndez, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008)Hörmander, L.: On interior regularity of the solutions of partial differential equations. Comm. Pure Appl. Math. XI, 197–218 (1958)Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971)Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1983)Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010)Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Math. 208(1), 31–46 (2012)Komatsu, H.: A characterization of real analytic functions. Proc. Jpn. Acad. 36, 90–93 (1960)Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962)Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979)Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979)Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985)Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987)MĂ©tivier, G.: PropriĂ©tĂ© des itĂ©rĂ©s et ellipticitĂ©. Comm. Partial Differ. Equ. 3(9), 827–876 (1978)Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Amer. Math. Soc. 39(3), 547–552 (1973)Rodino, L.: On the problem of the hypoellipticity of the linear partial differential equations. In: Buttazzo, G. (ed.) Developments in Partial Differential Equations and Applications to Mathematical Physics. Plenum Press, New York (1992)Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific, Singapore (1993)Zanghirati, L.: Iterates of a class of hypoelliptic operators and generalized Gevrey classes. Boll. U.M.I. Suppl. 1, 177–195 (1980

    A simple proof of Kotake-Narasimhan theorem in some classes of ultradifferentiable functions

    Full text link
    [EN] We give a simple proof of a general theorem of Kotake-Narasimhan for elliptic operators in the setting of ultradifferentiable functions in the sense of Braun, Meise and Taylor. We follow the ideas of Komatsu. Based on an example of Metivier, we also show that the ellipticity is a necessary condition for the theorem to be true.C. Boiti and D. Jornet were partially supported by the INdAM-GNAMPA Projects 2014 and 2015. D. Jornet was partially supported by MINECO, Project MTM2013-43540-PBoiti, C.; Jornet Casanova, D. (2017). A simple proof of Kotake-Narasimhan theorem in some classes of ultradifferentiable functions. Journal of Pseudo-Differential Operators and Applications. 8(2):297-317. https://doi.org/10.1007/s11868-016-0163-yS29731782Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. Oper. Theory Adv. Appl. Birkhauser Basel 245, 21–33 (2015)Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with constant coefficients. arXiv:1412.4954Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal. 2014, 1–17 Article ID 438716 (2014). doi: 10.1155/2014/438716Bolley, P., Camus, J., Mattera, C.: AnalyticitĂ© microlocale et itĂ©rĂ©s d’operateurs hypoelliptiques. SĂ©minaire Goulaouic-Schwartz, 1978–1979, Exp No. 13, École Polytech, PalaiseauBonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways of define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)FernĂĄndez, C., Galbis, A.: Superposition in classes of ultradifferentiable functions. Publ. Res. I Math. Sci. 42(2), 399–419 (2006)Jornet Casanova, D.: Operadores Pseudodiferenciales en Clases no CasianalĂ­ticas de Tipo Beurling. Universitat PolitĂšcnica de ValĂšncia (2004). doi: 10.4995/Thesis/10251/54953Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010)Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Stud. Math. 208(1), 31–46 (2012)Komatsu, H.: A characterization of real analytic functions. Proc. Jpn Acad. 36, 90–93 (1960)Komatsu, H.: On interior regularities of the solutions of principally elliptic systems of linear partial differential equations. J. Fac. Sci. Univ. Tokyo Sect. 1, 9, 141–164 (1961)Komatsu, H.: A proof of KotakĂ© and Narasimhan’s theorem. Proc. Jpn Acad. 38(9), 615–618 (1962)Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. Fr. 90, 449–471 (1962)Kumano-Go, H.: Pseudo-Differential Operators. The MIT Press, Cambridge, London (1982)Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979)Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979)Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985)Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987)Lions, J.L., Magenes, E.: ProblĂšmes aux limites non homogĂšnes et applications, vol. 3. Dunod, Paris (1970)MĂ©tivier, G.: PropriĂ©tĂ© des itĂ©rĂ©s et ellipticitĂ©. Commun. Part. Differ. Eq. 3(9), 827–876 (1978)Nelson, E.: Analytic vectors. Ann. Math. 70, 572–615 (1959)Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Am. Math. Soc. 39(3), 547–552 (1973)Oldrich, J.: Sulla regolaritĂ  delle soluzioni delle equazioni lineari ellittiche nelle classi di Beurling. (Italian) Boll. Un. Mat. Ital. (4) 2, 183–195 (1969)Petzsche, H.-J., Vogt, D.: Almost analytic extension of ultradifferentiable functions and the boundary values of holomorphic functions. Math. Ann. 267(1), 17–35 (1984

    Occurrence probability and earthquake size of post shut-in events in geothermal projects

    Get PDF

    Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis

    Get PDF
    [EN] We use techniques from time-frequency analysis to show that the space S(omega )of rapidly decreasing omega-ultradifferentiable functions is nuclear for every weight function omega(t) = o(t) as t tends to infinity. Moreover, we prove that, for a sequence (M-p)(p) satisfying the classical condition (M1) of Komatsu, the space of Beurling type S-(M)p when defined with L-2 norms is nuclear exactly when condition (M2)' of Komatsu holds.We thank the reviewer very much for the careful reading of our manuscript and the comments to improve the paper. The first three authors were partially supported by the Project FFABR 2017 (MIUR), and by the Projects FIR 2018 and FAR 2018 (University of Ferrara). The first and third authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The research of the second author was partially supported by the project MTM2016-76647-P and the grant BEST/2019/172 from Generalitat Valenciana. The fourth author is supported by FWF-project J 3948-N35.Boiti, C.; Jornet Casanova, D.; Oliaro, A.; Schindl, G. (2021). Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis. Collectanea mathematica. 72(2):423-442. https://doi.org/10.1007/s13348-020-00296-0S423442722Asensio, V., Jornet, D.: Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions. Rev. R. Acad. Cienc. Exactas FĂ­s. Nat. Ser. A Mat. RACSAM 113(4), 3477–3512 (2019)Aubry, J.-M.: Ultrarapidly decreasing ultradifferentiable functions, Wigner distributions and density matrices. J. London Math. Soc. 2(78), 392–406 (2008)Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966)Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017)Boiti, C., Jornet, D., Oliaro, A.: The Gabor wave front set in spaces of ultradifferentiable functions. Monatsh. Math. 188(2), 199–246 (2019)Boiti, C., Jornet, D., Oliaro, A.: About the nuclearity of S(Mp)\cal{S}_{(M_{p})} and Sω\cal{S}_{\omega }. In: Boggiatto, P., et al. (eds.) Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis, pp. 121–129. BirkhĂ€user, Cham (2020)Boiti, C., Jornet, D., Oliaro, A.: Real Paley-Wiener theorems in spaces of ultradifferentiable functions. J. Funct. Anal. 278(4), 108348 (2020)Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)FernĂĄndez, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005)FernĂĄndez, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)Franken, U.: Weight functions for classes of ultradifferentiable functions. Results Math. 25, 50–53 (1994)Gröchenig, K.: Foundations of Time-Frequency Analysis. BirkhĂ€user, Boston (2001)Gröchenig, K., Leinert, M.: Wiener’s Lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17(1), 1–18 (2004)Gröchenig, K., Zimmermann, G.: Spaces of Test Functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004)Heinrich, T., Meise, R.: A support theorem for quasianalytic functionals. Math. Nachr. 280(4), 364–387 (2007)Hörmander, L.: Notions of Convexity. Progress in Mathematics, vol. 127. BirkhĂ€user, Boston (1994)Janssen, A.J.E.M.: Duality and Biorthogonality for Weyl-Heisenberg Frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)Komatsu, H.: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect IA Math. 20, 25–105 (1973)Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 119(3), 269–285 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Petzsche, H.J.: Die nuklearitĂ€t der ultradistributionsrĂ€ume und der satz vom kern I. Manuscripta Math. 24, 133–171 (1978)Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)Pilipović, S., Prangoski, B., Vindas, J.: On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution. J. Math. Pures Appl. 116, 174–210 (2018)Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific Publishing Co. Inc, River Edge, NJ (1993)Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014)Schmets, J., Valdivia, M.: Analytic extension of ultradifferentiable Whitney jets. Collect. Math. 50(1), 73–94 (1999

    The Gabor wave front set in spaces of ultradifferentiable functions

    Get PDF
    [EN] We consider the spaces of ultradifferentiable functions S as introduced by Bjorck (and its dual S) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use of weight functions to describe more precisely the global regularity of (ultra)distributions.The authors were partially supported by the INdAM-Gnampa Project 2016 "Nuove prospettive nell'analisi microlocale e tempo-frequenza", by FAR2013, FAR2014 (University of Ferrara) and by the project "Ricerca Locale - Analisi di Gabor, operatori pseudodifferenziali ed equazioni differenziali" (University of Torino). The research of the second author was partially supported by the project MTM2016-76647-P.Boiti, C.; Jornet Casanova, D.; Oliaro, A. (2019). The Gabor wave front set in spaces of ultradifferentiable functions. Monatshefte fĂŒr Mathematik. 188(2):199-246. https://doi.org/10.1007/s00605-018-1242-3S1992461882Albanese, A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)Albanese, A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012)Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966)Boiti, C., Gallucci, E.: The overdetermined Cauchy problem for ω\omega ω -ultradifferentiable functions. Manuscripta Math. 155(3-4), 419–448 (2018)Boiti, C., Jornet, D.: A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. J. Pseudo-Differ. Oper. Appl. 8(2), 297–317 (2017)Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111(3), 891–919 (2017)Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front sets with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal. 2014, 1–17 (2014). https://doi.org/10.1155/2014/438716Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017)Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books in Mathematics/Ouvrages de MathĂ©matiques de la SMC. Springer, New York (2006)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)Cappiello, M., Schulz, R.: Microlocal analysis of quasianalytic Gelfand–Shilov type ultradistributions. Complex Var. Elliptic Equ. 61(4), 538–561 (2016)Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530–571 (2017)Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Springer, Berlin (2016)FernĂĄndez, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005)FernĂĄndez, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)Fieker, C.: PP P -KonvexitĂ€t und ω\omega ω -HypoelliptizitĂ€t fĂŒr partielle Differentialoperatoren mit konstanten Koeffizienten. Diplomarbeit, Mathematischen Institut der Heinrich-Heine-UniversitĂ€t DĂŒsseldorf (1993)Gröchenig, K.: Foundations of Time-Frequency Analysis. BirkhĂ€user, Boston (2001)Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004)Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York (2011)Hörmander, L.: Fourier integral operators. Acta Math. 127(1), 79–183 (1971)Hörmander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, pp. 118–160. Springer, Berlin (1991)Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag, Berlin (1983)Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. II. Springer-Verlag, Berlin (1983)Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, Berlin (1985)Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 119(3), 269–285 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Science Publications, Clarendon Press, Oxford (1997)Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349–367 (2005)Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Springer, Basel (2010)Pilipović, S.: Tempered ultradistributions. Boll. U.M.I. B (7) 2(2), 235-251 (1988)Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013)Pilipović, S., Prangoski, B.: Anti-Wick and Weyl quantization on ultradistribution spaces. J. Math. Pures Appl. 103(2), 472–503 (2015)Rodino, L.: Linear Partial Differential Operators and Gevrey Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (1993)Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014)Schulz, R., Wahlberg, P.: Microlocal properties of Shubin pseudodifferential and localization operators. J. Pseudo-Differ. Oper. Appl. 7(1), 91–111 (2016)Schulz, R., Wahlberg, P.: Equality of the homogeneous and the Gabor wave front set. Commun. Partial Differ. Equ. 42(5), 703–730 (2017)Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin (1987)Sjöstrand, J.: SingularitĂ©s analytiques microlocales. AstĂ©risque 95, 1–166 (1982)Toft, J.: The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3(2), 145–227 (2012)Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ. Oper. Appl. 8(1), 83–139 (2017)Treves, F.: Topological vector spaces, distributions and kernels. Academic Press, New York (1967

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table

    Measurement of the CKM angle Îł from a combination of B±→Dh± analyses

    Get PDF
    A combination of three LHCb measurements of the CKM angle Îł is presented. The decays B±→D K± and B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− ïŹnal states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-ïŹt value of Îł =72.0◩ is found, and conïŹdence intervals are set Îł ∈ [56.4,86.7]◩ at 68% CL, Îł ∈ [42.6,99.6]◩ at 95% CL. The best-ïŹt value of Îł found from a combination of results from B±→Dπ± decays alone, is Îł =18.9◩, and the conïŹdence intervals Îł ∈ [7.4,99.2]◩ âˆȘ [167.9,176.4]◩ at 68% CL are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ± decays gives a best-ïŹt value of Îł =72.6◩ and the conïŹdence intervals Îł ∈ [55.4,82.3]◩ at 68% CL, Îł ∈ [40.2,92.7]◩ at 95% CL are set. All values are expressed modulo 180◩, and are obtained taking into account the effect of D0–D0 mixing

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure
    • 

    corecore