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NUCLEARITY OF RAPIDLY DECREASING ULTRADIFFERENTIABLE
FUNCTIONS AND TIME-FREQUENCY ANALYSIS

CHIARA BOITI, DAVID JORNET, ALESSANDRO OLIARO, AND GERHARD SCHINDL

ABSTRACT. We use techniques from time-frequency analysis to show that the space S, of
rapidly decreasing w-ultradifferentiable functions is nuclear for every weight function w(t) = o(t)
as t tends to infinity. Moreover, we prove that, for a sequence (M,), satisfying the classical
condition (M1) of Komatsu, the space of Beurling type S(az,) when defined with L? norms is
nuclear exactly when condition (M2)" of Komatsu holds.

1. Introduction

One of the main properties of a nuclear space is that the Schwartz kernel theorem holds,
which gives, for instance, a different representation of a continuous and linear pseudodifferential
operator as an integral operator in terms of its kernel. This is very useful for the study of the
propagation of singularities or the behaviour of wave front sets of pseudodifferential operators.
See, for example, [1], [5 10} [11], 23, 24] and the references therein.

In fact, in [5] the first three authors of the present work imposed the following condition
on the weight function: there is H > 1 such that for every ¢t > 0, 2w(t) < w(Ht) + H (see
[8, Corollary 16 (3)]), to have that the space S,(R?) is nuclear (see [6]). Hence they could
analyse the kernel of some pseudodifferential operators [5, Section 4]. In the present paper,
we complete the study begun in [6] and prove that S, (R?) is nuclear for every weight function
w(t) = o(t) as t tends to infinity (see Definition [2.1]). Hence, now the powers of the logarithm
w(t) =log?(1+t), B > 0, are allowed as weight functions and, in particular, we recover a known
result for the weight w(t) = log(1+1), namely, that the Schwartz class S(R?) is a nuclear space.

To see that S,(R?) is nuclear we establish an isomorphism, which is new in the literature,
with some Fréchet sequence space. We use expansions in terms of Gabor frames, that are a
fundamental tool in time-frequency analysis. This is motivated by the rapid decay of the Gabor
coefficients of a function in S, (R%) when w is a subadditive function, as we showed in [5]. More
precisely, we proved that u € S,,(R?) if and only if

sup e’\“(")|V¢u(a)| < 400, for all A > 0,
oEaoZix BoZd
where ay, By > 0 are sufficiently small so that {I1(0)¢}yeagzdxpozd 1S @ Gabor frame in L?(R?)
for a fixed window function ¢ € S,(R?), V,u is the short-time Fourier transform of u and
I1(0) is the time-frequency shift defined as I1(0)p(y) = e'WPom p(y — agk), for o = (apk, fon).
The usual properties of modulation spaces in [5] hold only when the weight function w is
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subadditive. However, the expansion in terms of Gabor frames is still possible when the weight
is non subadditive and satisfies w(t) = o(t) as t tends to infinity. In fact, we prove here that
S, (R9) is isomorphic to a topological subspace of the sequence space

(1.1) Ay = {c = (co)ocagzixpozt - cllk == sup  |eo|e™® < +oo, Yk € N}.
o€apZix BoZd

The isomorphism is defined in (2.6)) by the restriction on its image of the analysis operator, that
maps u € S,(R?) to its Gabor coefficients {V,u(0)}seapzixg,zd- As a consequence, S, (RY) is
nuclear by an application of Grothendieck-Pietsch criterion to the space A, (Proposition [3.2]).
This isomorphism is not the only one existing in the literature, and it should be compared with
the one given by Aubry [2], only for the one-variable case, obtaining that S, (R) is isomorphic
to the different sequence space

Ay = {(Ck)keNo tsup egle ) < oo, Wi € No}'
keNo

Aubry uses expansions in terms of the Hermite functions, as Langenbruch [18] did previously

for spaces defined by sequences in the sense of Komatsu.

Finally, in the last section of the paper, and without using techniques from time frequency-
analysis, we characterize when the Beurling space of ultradifferentiable functions Sy, (R?)
(see formula (1)) for the definition) in the sense of Komatsu is nuclear. We can give such a
characterization when the space is defined by L? norms. We explain and motivate a little bit
this result. Pilipovi¢, Prangoski and Vindas [22] showed that

la-+61
(1.2) Seuy (RY) = {f c C*°(RY) : sup sup 97”:5“06]“@)”00 < +o0, Vj€ N},
a,BeNE zeR? Va+p]

is nuclear when (M,), satisfies the standard conditions (/1) (defined below in formula (LH))
and (M2) (that we do not define here because it is not used), which is stronger than (M2)’,
defined below in formula (L.4]). On the other hand, using the isomorphism of [18], we proved in
[6] that the space S,)(R?) is nuclear if (M,), satisfies that there is H > 0 such that for any
C' > 0 there is B > 0 with

(1.3) s2M, < BC°H*""M,,,,  Vs,p €Ny
and (M2) (stability under differential operators):
(14) ElA, H>0: Mp+1 < AHpMp, \V/p € Np.

The condition (L3]) is quite natural and not restrictive at all and it is used by Langen-
bruch [18] to show that the Hermite functions are elements of S(y)(R?). Moreover, Lan-
genbruch also proves in [I8, Remark 2.1] that under these two conditions (3] and (I.4),
Sy (R = S,y (RY). If we do not assume (L4) and consider only Si,)(R?) (the space
defined with L? norms), after a careful reading of the proofs of some results of [I8] in the
Beurling case and the use of techniques of Petzsche [20], we are able to prove here that under
the additional conditions (M1) (logarithmic convezity):

(1.5) M? < My My, VpeN,

and that M,"" — 400 as p — +00, S,y (R?) is nuclear if and only if (M,), satisfies (M2)'.
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The paper is organized as follows. In Section 2] we show that Gabor frames have a stable
behaviour with the only assumption w(t) = o(t) as t tends to infinity on the weight function.
Indeed, we see that the analysis and synthesis operators are well defined and continuous in
the suitable spaces (Propositions and 2.10), defining an isomorphism between S,,(R%) and a
subspace of A,,. In Section B we recover for this setting some known properties of Kothe echelon
spaces to see that the sequence space A, is nuclear. And, finally, in Section 4l we characterize
the nuclearity of S, (R?).

2. Gabor frame operators in S, (R%)

Let us condider weight functions of the form:

Definition 2.1. A weight function is a continuous increasing function w : [0, +00) — [0, 4+00)
satisfying the following properties:

() there is L > 1 such that w(2t) < L(w(t) + 1), for each t > 0;

(B) w(t) = oft) ast— +oo;
(v) there are a € R;b > 0 such that w(t) > a+ blog(1+1t), t > 0;
(9)

the map t — ,(t) := w(e') is conver.
For ¢ € C?, we put w(¢) := w(|¢]), where || denotes the Euclidean norm of C.
Note that condition («) implies
(2.1) w(ty +t2) < L(w(ty) +w(tz) + 1), t1,ta > 0.
We denote by ¢}, the Young conjugate of ¢, defined by
Pu(s) = stglo){ts — pu(t)}-

We recall that ¢} is an increasing and convex function satisfying (¢)* = ¢, (see [15]). More-
over ¢ (s)/s is increasing. For a collection of further well-known properties of ¢ we refer, for
instance, to [7, Lemma 2.3].

We consider the following notation for the Fourier transform of u € L'(R?):

F(§) = i(6) = [ @ “9ds,  eeRe

with standard extensions to more general spaces of functions or distributions. We recover from
[3] the following

Definition 2.2. The space S,(R?) is the set of all u € L'(R?) such that u, 4 € C*(RY) and
for each A > 0 and each o € NI we have

sup M@ |9%u(z)| < +oo  and  sup e [0*0(€)| < +oo0.
r€R4 £eRd

The corresponding strong dual of ultradistributions will be denoted by S’ (R?).
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We denote by T, M, and II(z), respectively, the translation, the modulation and the phase-
space shift operators, defined by

T f(y)=fly—x), Mcf(y) =€ f(y)
(z) f(y) = MeTo f (y) = €' £>f(y )

for z,y,¢& € R? and 2z = (x,§).
For a window function ¢ € S,,(R%)\ {0} the short-time Fourier transform (briefly STFT) of
f € 8, (RY) is defined, for z = (z,€) € de, by

(2.2) Vof(2) = )w>
(2.3) / Iy e iy,

where the brackets (-,-) in (2.2) and the (formal) integral in (2.3)) denote the conjugate linear
action of S/, on S,,, consistent with the inner product (-, -) 2.

By condition () of Definition 211t is easy to deduce that S,,(R%) c S(RY). Hence, S, (R?)
can be equivalently defined as the set of all u € S(R?) that satisfy the conditions of Defini-
tion 22 The Fourier transform F : S, (R%) — S, (R?) is a continuous automorphism, that can
be extended in the usual way to S’ (R?) and, moreover, the space S,(R?) is an algebra under
multiplication and convolution. On the other hand, for u, ¢ € S,(R?) we have Vyu € S, (R?*).
Moreover, for u € S’ (R?) the short-time Fourier transform is well defined and belongs to
S/ (R*®).  We refer to [3, 14, [5] for subadditive weights, and to [4, [7] for non-subadditive
weights; in particular, all results of [5, Section 2] are valid in the non-subadditive case also.

We shall need the following theorem from [7]:

Theorem 2.3. Given a function u € S(R?) and 1 < p,q < +oo, we have that u € S, (R?) if
and only if one of the following equivalent conditions is satisfied:
(@) 1) VYA>0, aeNI3C, >0 st ||*@Do%(z)||r < Con,

i) VA>0, a € N¢ 30, > 0 s.L. ||e*°J<€>aaA( Elpe < Con;
(b) 1) VYA>0, aeN!3C, >0 st ||@Daeu(x)||p < Conx,

i) VA >0, a € N¢ 30,0 > 0 s.t. [[eO0(E) || 1o < Can;
() i) YA >03Cy >0 s.t. ||e’\‘”ﬂ u(z)||p» < Ch,

i) YA >0 3Cy >0 s.t. || e < Cy;
(d) 1) VA>0,8€Nt 305, >0 s.t. sup ||2°0%u(x)|| e 94(5) < Oy,

aENg
161
ii) Vu > 0,0 € N¢ 3C,,,, > 0 s.t. sup ||2°0u(z)||pae” wet (1) < Cupu;
BeN
(e) Yu,A>03C, >0 s.t. sup ||9350“u(:£)||Lpe_’\%(‘a‘)e_“%( ) <Cux;
a,BENg
(f) VA>03C, >0 s.t. sup ||$600U($)||Lp6_A¢Z(‘QIB‘) <Cy;
a,BENg
(9) Y, A >0 3C,» >0 s.t. sup ||e““(m)0°‘u(:)s)||Lpe_’\“oz(%) <Cuns
aENg

(h) Given 1 € S,(RY)\ {0}, YA >0 3Cy > 0 s.t. ||[Vypu(2)e® || 1ra < C.
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Let us set, for A € R\ {0},

my(z) = M), z € R*,

and consider the weighted LP? spaces

LR (R*) = {F measurable on R?? such that

1Pl = ([, ([ 1@ pmseopar) " a) ™ < oo,

for 1 < p,q < 400, and

Ly d(R*) = {F measurable on R?? such that

|l = (/R (esssup \F(x,g)\mA(x,g))nguq < +oo},

r€R

Lh=(R*) = {F measurable on R?? such that

1/p
|F Il = esssup ([ |F(@,€)Fma(e,)7dz) < +oo},
Rd

£eRd

for 1 < p,q < +o0 with p = +00 or ¢ = 400 respectively. If p = ¢ we write L, (R?) = L1 (R?).

Here we consider generic weight functions w satisfying («) of Definition 2.1 (weaker than
subadditivity). In this case modulation spaces lack several properties. Hence we prove directly
some results on Gabor frames in S, (R?) without using modulation spaces. If w is subadditive
we know, by Theorem 4.2 of [14], that for any fixed ¢ € S, (R?) its dual window 1, in the
sense of the theory of Gabor frames (see Grochenig [12]), belongs to S,,(R?) (see also [13, Thm.
4.2] and [I6]). In our case we will fix @o(z) := e 1*I* the Gaussian function, ag, fy > 0 such
that {I1(0)¢0 }reagzixpozd 18 a Gabor frame for L?(R?), and then prove that the canonical dual
window v of g is in S, (R?). To this aim we start by the following

Lemma 2.4. Let w be a weight function. There exists then a subadditive weight function o
such that w(t) = o(o(t)) as t — +o0.

Proof. Let us consider wy(t) = max{0,¢t — 1}. This is a continuous increasing function wy :
[0, 400) — [0,4+00) that satisfies (o), (7) and () of Definition 1] and moreover wo|p1 = 0
and wy is concave on [1 + 00).

Then, by Lemma 1.7 and Remark 1.8(1) of [9], there exists a weight function A satisfying
(@), (v) and (6) and such that Al =0, A concave on [1,4+00) and

w(t) =o(A(t)),  ast— +oo,
At) = o(wo(t)) = o(t), as t — +o0.
Since A(t + 1) is concave on [0, +00) with A(1) = 0, we have that o(t) := A(f) + A(2) is the

required weight function. O

Proposition 2.5. Let po(x) = e be the Gaussian function and let ¢ be a dual window of
wo. Then @g, vy € S,(RY) for every weight function w.
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Proof. Let w be a weight function as in Definition 2.1l By Lemma 2.4 there exists a subadditive
weight function o such that w(t) = o(o(t)) as t — +o00. Then S,(R?) C S, (RY).

Clearly ¢y € S,(R?) C S,,(R?) by condition (3). Since o is subadditive, by [14, Thm. 4.2],
its dual window 1y € S,(R%) C S, (R%) and the proof is complete. O

We fix, once and for all, pg(x) = e~ 11” ag, By > 0 such that {IL(0) 0} reapzixpoza is a Gabor
frame for L? and vy the canonical dual window of ¢q (see [I2, Section 7.3]). For the lattice
A = ayZ¢ x ByZ?, we consider the analysis operator C,, acting on a function f € L*(R?)

Coof = (f,11(0)¢0), o €A,
and the synthesis operator D, acting on a sequence ¢ = (Cxn)k nezd
Dy,c= Z cenll(aok, Bon)iy.
k,nezd
It is well known (see, for instance, [12]) that
DyyCypy =1d,  the identity on L*(R%),
since 1) is the canonical dual window of ¢g, and then
(2.4) DyyCpy =1d,  on S,(RY) c L*(RY).

Later on we shall explain more precisely this identity on S, (R?).
We denote by (24, for 1 < p,q < +oo and A € R\ {0}, the space of all sequences a =

(Akn)knezd, With ag, € C for every k,n € Z?, such that

1/q

qa/p
lallegs == { > (Z \akn\”mx(k,n)”) < 400,

n€Zd \kezd

if 1 <p,q<+o0,

1/q
q
||a||£;’,?f = (Z (SUP |akn|m,\(k,n)) ) < 400,

nezd ke
1/p
lal| e = sup Z |agn[Pmy(k, n)P < 00,
n€Zt \ ez

for 1 < p,q < 400 with p = +00 or ¢ = 400 respectively.
Then we say that a measurable function F on R?? belongs to the amalgam space W(Lba)
for the sequence

apn = esssup |F(k+x,n+&)| = ||F - TunXxaollre,
(z,£)€l0,1]24

where x¢ is the characteristic function of the cube @ = [0,1]*¢, when a = (agn)gneze € .
Equivalently, F' € W (LL?) if and only if

(2.5) IFI < > binTemXaq

k,n€Zd
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for some b = (bpn)kneze € €l (cf. [12, pg. 222]). The amalgam space W (L) is endowed
with the norm

| Fllwasg) = lallas
In what follows we shall need the Young estimate for L5 :
Proposition 2.6. Let w be a weight function and L as in (2.10). Set, for every X € R,
O ARSI B b
Then, for '€ L and G € L}num, with 1 < p,q < 400, we have that F x G € L2 and
IF * Gllgs < OlF g Gl

() v(X)

for a constant C\ > 0 depending on .

Proof. Let us first assume 1 < p, ¢ < 400. From the definition of convolution

p q/p 1/q
||F*G||Lg;;s</ (/ (em@ / IF(x—y,S—n)G(y,n)ldydn) dx) dg) |
R4 Rd R2d

Now, for A > 0 we have, by (21),

Mo(7,€) < AL(w( = y,§ —n) +w(y,n) + 1),
so that

|F 5 Gllgg < e [(IF10) = (1610,

By the standard Young’s inequality for (non weighted) LP? spaces we obtain
1F % Glliza < CAlllF IO o[G0 1
= CillFllzze Gz, = CAllF| e

ML mAL p(X)

Gy,

v\

For A < 0 we have, by (2Z1]),

A A
Aw(z,§) < Zw(:v —y,§—n) —Aw(y,n) — A= Zw(:v —y,§—n) + [Mw(y,n) — A,

and then, as before,

I % Cllugg < CalF g, G ey, = CalF g, I1F sy,
for some C) > 0. The proof for p = 400 and/or ¢ = 400 is similar. O

We have the following proposition, analogous to [12, Prop. 11.1.4]. We give the proof for the
convenience of the reader.

Proposition 2.7. Let w be a weight function, L as in 1) and A\ > 0. If F' € W(Lk1 ) is
continuous, then for every o, B > 0 there exists a constant Cy 5 > 0 such that

HF|adeBZng%L§ < Oa,B,AHFHW(L”'q )

for my(k,n) == my(ak, fn).
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Proof. The continuity of F'is necessary in order that F'(ak, fn) is well defined. For (ak, fn) €
(r,s) + [0, 1]** with (r,s) € Z x Z* we have
’ﬁl)\(]{?,n) _ e)\w(ak,ﬁn) S sup eAL(w(r,s)—l—w(w,f)—l—l)
(z,6)€[0,1]24

sup e
(z,£)€[0,1]2¢

e)\Le)\Lw(r,s) ALw(z,¢

) = C,\m)\L(r, 8)

for Cy = e SUD (1, ¢)€[0,1]24 eMw@8)  Then

|F(ak, Bn)|my(ak, fn) < esssup |F(r+xz,s+&)| - Chmap(r, s)
(z,£)€l0,1]24

S C)\HF . T(T’,S)XQHL‘X’ . m,\L(r, S).
Since there are at most C,, := ([A] + 1)d points ak € r + [0, 1] we obtain

1/p 1/p
(Zw(ak,ﬁn)\pm(ak,ﬁn)f’) < (éacg’zHF-T(T,S)XQH’;OOmAL(r,s)p> .

kezd reZd

. d
Analogously, there are at most Cz := ([%] + 1) points An € s+ [0, 1]¢ and therefore

1/q

q/p
[ Flazaxpzel| e < [ D Co (éacf Y ||F - Tiroxalls mar(r, S)p>
LN

sezZd rezd

L~
< GG O Fllwags, )
Il
Proposition 2.8. Let w be a weight function, L as in (1) and A > 0. If I € L2 and

mxL
Gel), , then FxGeW(LY) and
AL A
1% Gllwiss) < CrllPligs, Gl -
Proof. From the definition of the norm in W (L;3 ) we have

|F * Gllw (Lo

m A

= sup ess sup
kmezd | | (2,€)€[0,1]2
By (1)), it is easy to see that

wk,n) < Lw(x +k —y,&+n—n)+ LPw(z, ) + L*w(y,n) + L* + L.
Therefore, we obtain

/ Flz+k—y,&+n—nG(y, n)dydnu 6“(’“’")} :
R2d

IF 5 Gl < 0 swp { esssup
A knezd \ (z,6)€[0,1]2d

/ ALy &) | P o — gy £ — )
R2d

e)xLQw(x,S) } )

- MW |Gy, )| dydn
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Since (x,€) € [0,1]*¢ we have that P8 s bounded by a constant depending on A (and
L), so we obtain

| F * Gllwre y < Cx sup { ess sup (’\L“ |F( )|) (e’\sz("')|G(-,-)|)(x—|—k‘,§—|—n)
A knezd \ (z,€)€[0,1]2d

- a@ien - (46

Lo RZd

for some C > 0.
By Young’s inequality we finally deduce

w 20.)
1F * Gllwrg,) < Calle*™ Fll= |Gl = CAllF| g

MXL

Gy

myrL2
U

Now, our aim is to show that there is an isomorphism between S, (R?) and its image through
the analysis operator C,:

(2.6) Cop: S,(RY — ImC,, C A,,

where A, is defined in (IT).

The following proposition holds for every window function ¢ € S, (R%)\ {0} and in particular
for our fixed window ¢y € S, (R?):

Proposition 2.9. Let w be a weight function and ¢ € S,(R?)\ {0}. The analysis operator
C,: S,(RY) — A,
15 continuous.
Proof. 1t is known that if f € S, (R?) then for every A > 0 there exists C, > 0 such that
V,f(2)| < Che ), z € R%,

In fact, this property is proved in [I4] when w is subadditive, but it is still true in the general

case (Theorem 3)). Since C,f = (V,f(0))sea we have C,f € A,
Now, we prove that the operator C,, is continuous. By [12, Lemma 11.3.3]

1
Vo /() < m=ao
’ (2m)?lllZ2
By Propositions 2.7 and 2.8, for every fixed A > 0 we obtain
Slellz |Vsof(<7)|€m(g) = ||Vso.f|aOZd><BoZd||€§f/\ < CAHVsofHW(L?,?AL)

S AVA P

(Vo fl* Ve (),  VzeR™

1
myr3

for my(k,n) = my(aok, Bon) and for some Cy,C§ > 0 (ap and [y are fixed). Observe that,
since f, € S,(R?), then V,,f € L . and Vop € L&nALg for every A > 0 by Theorem 2.3(h).
Therefore, for every fixed A > 0 there exists a constant C§ = C}[[Viellz2, > 0 such that
AL

Sgglvpf(a)lexw(" < OV f s

my 2

This gives the continuity by Theorem 23|(h). O
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The following proposition is valid for any ¢ € S,,(R9) \ {0}.

Proposition 2.10. Let w be a weight function and ¢ € S,(R?) \ {0}. Then the synthesis
operator

Dw : Aw — Sw(Rd)
18 continuous.

Proof. Let ¢ = (¢y)oen € A,,. For simplicity, we denote ¢, by c¢g, for o = (cvok, Bon). We start
proving that Dyc € S,(R?). We shall apply Theorem 2:3|(c) with p = +o00. So, first, we have
to see that Dyc € S(R?).

By definition

(27) (ch Z C]mMgon aok¢ Z Ckn 6 Bont>¢(t—aok)

k,nezd k,nezd

Now, we see that Dyc € C*(R?). To that aim we show that for each v € NZ, the series

(2.8) Z o) [clmeiw‘)"’tW(t — aok‘)}

k,nezd
is uniformly convergent on ¢t € R?. Let us compute
o [Cknei(ﬁon,t>¢(t — aok‘)} = Z (7) Con O ( i{Bon,t) ) ) (t — k)
L
n<y

(2.9) = Ckn, Z (Z) (iBon )" PomD )~ Fah(t — agk).

u<y
Since (Crn)gnezd € A, for every A > 0 there exists Cy > 0 such that
|Ckn‘ < C}\e—)\w(aokﬁon), ]{7, n e Zd.

Now, since w is increasing it is obvious that w(t, s) > 3(w(t) + w(s)). Therefore

(2.10) || < Cre=(@0kB0m) < 0 o= Fw(@ok) o= Fw(Bon),
Since
w(t) < L(w(agk —t) + w(apk) + 1),
we obtain
|Cin| < O™ 20m) g=w(e0k) = Ge(aok)
(2.11) < C,\e_i“’(ﬁon) —3w(aok) ,= 7 [Fw(t)~w(aok—t)~1]

< Che™ 1rw(0) %6—%“)(50") —%w(aok)64w(0¢ok 1)

(&
— C;\e—Ew(ﬁon)e—%w(aok)e%w(aok—t).
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Then we have, by 2.3), for Cy ., = C} max,< | 3|*=1!, since 1 € S, (R?) (see Definition 2.2),

‘8;’ [Cknei<ﬁon,t>¢(t — aok:)} } < |¢kn] Z (Z) |Bon|™|8) M (t — aok)|

u<y

= el 3 () a3y~ k)

n<y

(2.12) <2 (V) Gy~ 20 em3elent)| o P01~V ap(t — gl | e300
ol
By

< C;\ ﬁ/e—%w(aok)|50n|\’7\6—%w(50n)
for some C} | > 0. Hence, for A > 0 sufficiently large the series
S 0 [ @t — agh)]
k,n€zd

is uniformly convergent on ¢ € R%. This implies that Dyc € C*°(R?) for every ¢ € A,
In particular we can differentiate Dyc in (27) term by term, so that, to prove that Dyc €
S(R?), we can estimate, for every v, u € Ng,

0 (Dy)l = |t S 07 [erne @t — k)] '
k,neza
< M\ﬂ\ Z Chry Z (Y) e—%w(ﬁon)e—%w(aok)won‘\’y\ ‘8?_%@ — agk) e%w(t—aok)_
hnezd <y W
Since

[t < (|t — aok| + aok])H < 2W (1 + |t — aok|) (1 + [agk|™),

we obtain
107 (Dye)| < ) 2MCy,(1+ lagk ) e~ 19(@0R)| g |11l 3w(Bon)
k,nezd
D (7) (1+ [t — okl )87 F4p(t — agh)|ed <=0
iy
(2.13) < Orap Z (1 + |apk|#)e=3%(@0R)| gy | e=2(Fom)
k,nezd

for some C) ., > 0 because ¢ € S,,(R?), by Theorem 2.3|(b). Since the series in ([ZI3)) converges
for A > 0 sufficiently large, we have Dyc € S(R?).

By Theorem 2.3((c), to see that Dyc € S, (R?) it is now enough to prove that, for every >0,
the following two conditions hold:

(2.14) sup e;\w(t)|ch(t)| < 400,
teR?
(2.15) sup e’\w(5)|ﬁw\c(§)| < 400.

£cRd
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To prove (2.I4) we use the calculations in (2Z.IT)) and obtain, for every A > 4L\,
MODye(t) < X0 Y fernlli(t = aoh)

k,nezd
(216) < Z C)\e—%w(ﬁon)e—%w(aok)eiw(t)e—ﬁw(t)egegw(aok—t)W}(t_aok)‘
k,ncZd
(2.17) < C~’,\e (7 -2)w(0) Z . Jw w(Bon) fw(aok)’

k,neza

for some C, > 0, since ¢ € S.(R%). For \ sufficiently large the series in (Z.I7) converges and

hence (2.14) is proved.
To prove (2.15)) let us now consider

Dye(€) = / e N e Pt — agk)dt.
Re k,nezd

Since the series

k,n€zd

converges uniformly and moreover, by (ZI0) with A=0and X large enough,
}e—z‘<t,5> Z Cknei<ﬁon,t>¢(t _ ozok)‘ < Z || [0t — k)]

k,ne[—N,N]d k,n€[—N,N]d
(218) < Z C)\€4€ 2 50” w(aok)e 4Lw(t)
k,n€zd

< Che w0 ¢ LYRY),

by the Dominated Convergence Theorem

Dye(€) = D" e / Ve (t — ak)dt

knezd
= X o [ e Ay
knezd
- Z Crne ORI (¢ — Byn).
knezd
Then
(2.19) ‘ei“’(oﬁ/,\c(g)’ < () Z |Cron| [10(€ — Bom)]

k,n€zd

and since ¢ € S,,(R?) satisfies the same estimates as 1 the proof of (ZIF) is similar to that of
[2I4) and so Dyc € S, (R?).
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Now, we see that D, is continuous. To this aim we have to estimate (2.14) and (2.15]), for
every A > 0, by some seminorm of ¢ = (Cgn )k neze in A, Writing, for every A > 0,

‘Ckn| S sup (‘Ckn|€)‘w(a0k760n)) . e—)\w(aok,ﬁgn)

k,n€zd

and proceeding as to obtain ([ZI7), with supy,,cza (Jcxn|e(@0FH™)) instead of Cy in [ZI0), we
obtain that for every A > 0 there exist A > 0 and C5 > 0 such that

)

sup MO Dye(t)] < C5 sup (Jeg|e@ok5om).
teRd k‘,nEZd

Similarly, from (2.19)),
sup *O|Dye(€)] < 5 sup (JopfeeoHAm),
£eRrd k,nezd

for some C’/i\ > 0. Therefore Dy, is continuous and the proof is complete. O

We already know from the general theory of Gabor frames that D,,C,, = Id on S,(R?), as
already observed in (2.4]). Hence the operator in (2.6]) is injective, surjective, continuous and
its inverse Dy|mc,, is continuous. Since we consider on Im Cj, the topology induced by A,

to see that S,,(R?) is nuclear it is enough to check that A,, is nuclear [I9, Prop. 28.6].

3. Nuclearity of S, (RY)

In this section we show that A, is nuclear by an application of Grothendieck-Pietsch criterion.
For a countable lattice A, we consider a matrix

(3.1) A = (a5k) gen,
keN

of Kéthe type with positive entries, in the sense that A satisfies

(3.2) Ao > 0 Vo e Ak e N,
(3.3) Aok < Qg i1 Vo e A,k e N.
We denote

1/p
M(A) = {c = (es)oen : llelle = (Z |c(,|pa{;,k) < to0, Vk € N}, 1< p < +oo,

oeA

3=(A) i= {e = (o)oen + llelle = sup |cslay < +oo, Yk € N}
oeA

co(A) = {c €X°(A): lim |es]agr =0, Vk € N}.

|o|—+o0

We put

~ 1/p
P {o=(ahens (TlaP)  <o0.vheN},  15p<o

oeA
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Analogously, we define 7> and &. The spaces 7, for 1 < p < +00, and & are Banach spaces,
while A?(A), for 1 < p < +o0, and & (A) are Fréchet spaces. We consider the canonical basis

(en)nen:

1, o=n9
0, o#n.

Since A is countable, it is obvious that (e,),ea is a Schauder basis for éy(A) and AP(A), for
1<p<+oo.

The following result is analogous to [19, Prop. 28.16]. We give the proof in the case of lattices
for the sake of completeness.

€n = (5n0)aeA = {

Theorem 3.1. Let A be as in (B1) a matriz of Kdthe type with positive entries. The following
are equivalent:

(a) };\p(A) is nuclear for some 1 < p < 400;
(b) AP(A) is nuclear for all 1 < p < 4o00;
(c) Vke NImeN,m>k st Y _\apka,,, <+00.

Proof. If 1 < p < 400, then Sxp(A) is a Fréchet space with the increasing fundamental system of
seminorms (||- || )men and the Schauder basis (e;),ea. We can then apply Grothendieck-Pietsch
criterion (see [19, Thm. 28.15] or [21]) to A?(A) and obtain that A\?(A) is nuclear if and only if

(3.4) VEENImeNm>k: > |[lellllesl,! < +oc.
oEN

Since
1/p
leals = ( S bomPs) = aon
neA

the thesis is clear for p < +o0. )
Now, we treat the case p = +o00. Assume that A*°(A) is nuclear. We prove that

(3.5) VkeN3ImeNm>k: lim aa,,, =0.

|o|—+o0

To this aim, for every k£ € N, we denote

= {e=(e)oer s el = supleslaos < +o0
ogEN

the local space of A®(A). This is a Banach space with the norm || - ||z (observe that a,) > 0
for all 0 € A, k € N). The operator

Ay B, — 0™
¢ = (co)oer — Ai(c) == (Colok)oen
is an isometric isomorphism and Ag(FEy) = (>. For every k € N, the inclusion
ir: AY(A) — E,

(CU)UGA — (CU)UEA
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is compact by [19, Lemma 24.17]. Indeed, S\OO(A) is a locally convex space, which is nuclear
(by assumption) and hence Schwartz by [19, Cor. 28.5]; moreover Ej is a Banach space and
hence we can apply [19, Lemma 24.17] and obtain that there exists a neighbourhood V' of 0 in
A®(A), that we can take of the form {¢ € A*(A) : ||c|lm < €}, for some £ > 0 and with m > k
(the family of seminorms (|| - ||, )men is increasing), whose image through i, is precompact, and
hence compact. Moreover, for m > k clearly F,, C E.. So, for every k € N there exists m > k

such that the inclusion ¥ = i|p

=

Em — Ek
(CU)UEA — (CU)UEA

is compact (and also ¥, for all m’ > m).
Then, we put D := A 0iF o AL

D : 0> — (>
(CU)JEA — (Caa';ina'a,k)aeA~

The operator D is clearly compact. The restriction D := D‘éo satisfies f)(éo) C ¢o, for m > k,
since

|ca|a;}nag,k < |cg|a;}naa7m = |cs| = 0,

for ¢ = (¢;)sen € Go. The operator D is also compact.
For every ¢ > 0 we define, for m > k,
I.:={oce€A: aspa,,, >c},
and also

T, : Co — Cy

-1
Colly A , O - I
c= (CU)UEA — (T€(C)>U€A — oo kY o,m € .
0, otherwise.
The operator T : ¢y — ¢o is continuous since
1
sup |(T€(C))U| S — Sup |CU|_
sen € seA
Now we consider
PE ::DTg: éo —)50
c =~ Coy O - [5
( U)JEA ( J)UEA {O’ 5 A \ ]6'

Hence, P. is a compact projection on

Se i ={(¢o)oen € : co =0for o e A\ 1.} C é&.
Since ¢ is a Banach space we can apply [19, Cor. 15.6] and obtain that the kernel ker(Id —P)
is finite dimensional. But P. is a projection and hence its image Im(P.) = ker(Id —P.) is finite
dimensional and I, must be finite for every € > 0. Then

lim  agpa,,, =0
|o| =400 ’
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and (3.5)) is proved. )
This implies that A*(A) = ¢ (A). Indeed, if ¢ = (¢5)oen € A°(A) then for every k € N we
find m € N, m > k such that (3.3]) holds and we get

. . -1
lim |c,|apr = lm |co|agmaora,,, =0,
|o|—+o0 |o]—+oc0 ’

since |cy|ag.m is bounded because ¢ € A®(A) and o0y, — 0 by B.3). Therefore ¢ € ¢(A).
Now, ¢o(A) is a Fréchet space endowed with the increasing fundamental system of seminorms
(Il - [|m)men and the Schauder basis (e;),en. We can then apply Grothendieck-Pietsch criterion

B4) to ¢o(A) for
les ||k = sup |50n|an,k = Qo k-
neA
Since & (A) = A®(A) is nuclear by assumption, then (34) implies (c).

On the contrary, if (c) holds then ¢y(A) is nuclear by the Grothendiech-Pietsch criterion
B4). We see again that A (A) = éo(A). If ¢ = (¢y)oer € A°(A), we have

|Ca|aa,k = |CU|aU,maO',k)a0_-7}n — Oa

since |cy|ag.m is bounded for ¢ € A(A) and (B35) holds by the convergence of the series in (c).

Therefore ¢ € ¢(A). O
Observe that, for A = oZ?¢ x ByZ% as fixed in Section 2, the matrix
(3.6) A= (") pen,
keN

satisfies (32) and (33). Hence the space A,, defined in () is, in fact,

A2(A) = {c = (Co)oen t |lcllk = sup |eo|e" @) < +o00, Yk € N}.
geA

Proposition 3.2. The sequence space A, is nuclear-.
Proof. By Theorem B we have that A, = \>®(A) is nuclear if and only if
(3.7) VEeNImeNm>k, st Yy MO0 < poo,

ocEN
Since, by condition (7) of Definition 2]

1
kw(o)—mw(o) —(m—k)a ,—(m—k)blog(1+|o|) _ ,—(m—k)a
e <e e e (L + o] P9

we have, for m > k + %,

1
Z (11 [o])im=h < +00.

ocEA

As we explained at the end of Section 2 we deduce:

Theorem 3.3. The space S,,(RY) is nuclear.
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4. Nuclearity of S;)(R?) with L* norms

Let (M,)pen, be a sequence such that M,}/ P — 400 as p — +o0 and consider the locally convex
space of rapidly decreasing ultradifferentiable functions

(4.1) S, (R?) := {f c C*°(RY : sup sup J

a,BeNg zeR? a+p]

1228 f(2)[|s < +o00, V] € N},

where || - || denotes the L? norm. We write the associated function in the usual way:
P M
(4.2) M (t) = sup log —2.
peEN Mp

Langenbruch [I8] uses (L3) to show that the Hermite functions H,, for v € NZ, are an
absolute Schauder basis in S(yr,)(R?), where

H. () := (2Nl ¥/2)=1/2 oxpy <_ Z ‘ﬁ) h. (1),

J=0

and the Hermite polynomials h. are given by

d d
ho(x) == (—1)"exp (Z :5?) 7 exp <— fo) , r € R
=0 =0

Here we consider a matrix A* of Kothe type with positive entries as in Section Bl for A = N&,
defined by

(4.3) A f = M KNI vyeNI keN,

where M (t) is the associated function defined by ([2). We characterize when S,y (R?) is
nuclear with Theorem 3.5 of [20], that we state here in our setting, for the convenience of the
reader. In what follows we denote A\! := A(A*) and A>® := A>®(A*).

Theorem 4.1. Assume that the inclusion j : \' — X* has dense image. Let E be a locally
convex space such that we have a commutative diagram of continuous linear operators of the
form

T
E

)\1

)\OO
with S injective or T with dense image. Then \' is nuclear if and only if E is nuclear.

We can now prove the following:
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Proposition 4.2. Let (M,), be a sequence satisfying M;/p — +00 as p — 400, condition
([L3) and (M1). Then Suu,)(R?) is nuclear if and only if the associated function M(t) satisfies

(4.4) IH > 1 s.t. M(t) +logt < M(Ht)+ H, Vt>0.
Proof. We shall use Theorem Bl with E = S(y,)(R?). We observe that A* € X and denote
by j the inclusion
g A — >,
Let us consider the linear map
S Soy(RY) — A
[ — (C“/>~/eNg = (57(]0))«,61\157

where
&)= [ Fa) @y
are the Hermite coefficients of f, and then the linear map
T: A — Sa,)(RY)
(¢y)yeng Z ey Hy ().
yeNd

In Theorem 3.4 of [18] it was proved that condition (I3]) implies that S and T" are continuous.
Note also that the diagram in Theorem [£.1] commutes by the uniqueness of the coefficients with
respect to the Schauder basis (Hﬂ/)veNg.

Let us prove that j has dense image. By conditions MI}/ P — 400 and (M1), and by [20,
Lemma 3.2], we have

lim eMM=MU/M) — 0 ifh>H >0.

t—+o00
Therefore, for every k € N there exists m € N, m > k, such that
M (kly|*/2) =M (m|y|V/2) _ 0,

lim a%ka;}n: lim e
[Y|=+o00 ’ [Yl—=+o00

and hence A® = ¢ (A*), by the same arguments we used to prove that (335) implies A\>®(A) =
¢o(A) in Section Bl Then j(A!) is dense in A> = ¢y(A*) because

Coo(A") :={(cy)yene € Go(A") : ¢y =0 except that for a finite number of indexes}

is dense in ¢(A*) and is contained in A\!.
Moreover, S is injective. Hence, by Theorem BT E = Sy, (R?) is nuclear if and only if A!
is nuclear. By Theorem 3.1} the sequence space A! is nuclear if and only if

(4.5) Vke Ndn e Nym > k s.t. Z eMFNIVA=Mm ') 4 o
yeNd

The series in (45]) converges if and only if

(4.6) M(t)+ Nlogt < M(H™t) +Cnpg, VN €N,
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for some Cy g > 0 and N > 2d (see the proof of [6, Thm. 1]). This gives the conclusion since
([#.0) is equivalent to (4.4]) (see again the proof of [6, Thm. 1]). O

Theorem 4.3. Let (M,), be a sequence satisfying My'® = +00 as p — +oo, condition (@3)
and (M1). Then S, (R?) is nuclear if and only if (M2)' holds.

Proof. It follows from Proposition .2 because, under condition (M1), condition (M2) is equiv-
alent to condition (£4]) (see [6, Rem. 1]). O

If (M2)' is satisfied then Sy, (R?) can be equivalently defined with L> norms as in (L2)
(see [18, Remark 2.1]) and hence S(u,)(R?) is nuclear (cf. [6, Corollary 1]), but we cannot
derive a characterization in terms of (A/2)" from the results of Langenbruch [18§].
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