126 research outputs found

    RNA, DNA, and Cell Surface Characteristics of Lesional and Nonlesional Psoriatic Skin

    Get PDF
    We have measured the RNA and DNA content and examined cell surface characteristics of human epidermal cells derived from normal skin, and lesional and nonlesional areas of psoriatic skin prior to and following treatment on a modified Goeckerman protocol. Our results show that cells from active psoriatic lesions contain greater numbers of basal keratinocytes when compared with either nonlesional skin from the same patients or skin from healthy volunteers and individuals with other inflammatory skin lesions. Follow-up measurements 2-3 weeks after the initiation of therapy showed that the numbers of basal keratinocytes in resolving psoriatic lesions had decreased and approached normal levels. Multiparameter RNA/DNA flow cytometric analysis on parallel samples from the same psoriasis patients revealed an increased growth fraction and proportion of cycling cells in both the nonlesional and lesional skin compared with controls. Furthermore, the cellular RNA content was elevated in lesional psoriatic skin when compared with either nonlesional or normal skin. Flow cytometric examination of nonlesional and lesional epidermal cells obtained 2-3 weeks after the commencement of therapy revealed that the growth fraction and mean RNA content of the keratinocytes from resolving psoriatic plaques decreased in response to therapy. In contrast, the proportion of keratinocytes within the S + G2 + M phases of the cell cycle remained elevated. These data indicate that “uninvolved” psoriatic skin exhibits characteristics more closely resembling lesional psoriatic skin than normal skin. The results further suggest that quantitation of cellular RNA content and basal cell number might be sensitive indicators of early treatment response in psoriasis

    Mouse models of Japanese encephalitis virus infection: A systematic review and meta-analysis using a meta-regression approach.

    Get PDF
    BackgroundJapanese encephalitis (JE) virus (JEV) remains a leading cause of neurological infection across Asia. The high lethality of disease and absence of effective therapies mean that standardised animal models will be crucial in developing therapeutics. However, published mouse models are heterogeneous. We performed a systematic review, meta-analysis and meta-regression of published JEV mouse experiments to investigate the variation in model parameters, assess homogeneity and test the relationship of key variables against mortality.Methodology/ principal findingsA PubMed search was performed up to August 2020. 1991 publications were identified, of which 127 met inclusion criteria, with data for 5026 individual mice across 487 experimental groups. Quality assessment was performed using a modified CAMARADES criteria and demonstrated incomplete reporting with a median quality score of 10/17. The pooled estimate of mortality in mice after JEV challenge was 64.7% (95% confidence interval 60.9 to 68.3) with substantial heterogeneity between experimental groups (I^2 70.1%, df 486). Using meta-regression to identify key moderators, a refined dataset was used to model outcome dependent on five variables: mouse age, mouse strain, virus strain, virus dose (in log10PFU) and route of inoculation. The final model reduced the heterogeneity substantially (I^2 38.9, df 265), explaining 54% of the variability.Conclusion/ significanceThis is the first systematic review of mouse models of JEV infection. Better adherence to CAMARADES guidelines may reduce bias and variability of reporting. In particular, sample size calculations were notably absent. We report that mouse age, mouse strain, virus strain, virus dose and route of inoculation account for much, though not all, of the variation in mortality. This dataset is available for researchers to access and use as a guideline for JEV mouse experiments

    Studies of the Effect of Cyclosporine in Psoriasis In Vivo: Combined Effects on Activated T Lymphocytes and Epidermal Regenerative Maturation

    Get PDF
    Cyclosporine (CSA) decreases lymphokine synthesis and keratinocyte proliferation in vitro, but its in vivo mechanism of action in treating recalcitrant psoriasis is incompletely understood. Ten psoriasis patients were treated with CSA (2–7.5mg/kg/d) with clinical improvement in nine of 10 patients. Skin biopsies before and after1–3 months of CSA treatment were studied for evidence of immune and keratinocyte activation using immunoperoxidase and Northern blotting analysis. The number of activated, IL-2 receptor+ T cells in plaques after CSA treatment was reduced in all patients by a mean of 60%. Seven of 10 patients showed a decrease in keratinocyte HLA-DR expression; five of seven showed a decrease in gamma-IP-10 immunoreactivity, suggesting decline in gamma interferon levels in plaques after CSA therapy. We studied the effect of CSA treatment in vivo on TGFα IL-6 and keratin K16 expression, three markers of keratinocyte growth activation. Expression of keratinocyte TGFα and IL-6,which are elevated in active psoriatic epidermis,did not change in these patients after CSA treatment. The majority of patients (five of eight) continued to express the suggest that the predominant direct mechanism of action of Cyclosporine in vivo is a diminution of T-cell activation in plaques, with attendant decreased lymphokine production

    Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior

    Get PDF
    Purpose We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. Methods We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. Results These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. Conclusion These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis

    A haemagglutination test for rapid detection of antibodies to SARS-CoV-2

    Get PDF
    Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests do not require special equipment, are read by eye, have short development times, low cost and can be applied at the Point of Care. Here we describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. We will supply aliquots of the test reagent sufficient for ten thousand test wells free of charge to qualified research groups anywhere in the world

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore