121 research outputs found
Frontal lobe changes occur early in the course of affective disorders in young people
<p>Abstract</p> <p>Background</p> <p>More severe and persistent forms of affective disorders are accompanied by grey matter loss in key frontal and temporal structures. It is unclear whether such changes precede the onset of illness, occur early in the course or develop gradually with persistence or recurrence of illness. A total of 47 young people presenting with admixtures of depressive and psychotic symptoms were recruited from specialist early intervention services along with 33 age matched healthy control subjects. All participants underwent magnetic resonance imaging and patients were rated clinically as to current stage of illness. Twenty-three patients were identified as being at an early 'attenuated syndrome' stage, while the remaining were rated as having already reached the 'discrete disorder' or 'persistent or recurrent illness' stage. Contrasts were carried out between controls subjects and patients cohorts with attenuated syndromes and discrete disorders, separately.</p> <p>Results</p> <p>The patients that were identified as having a discrete or persisting disorder demonstrated decreased grey matter volumes within distributed frontal brain regions when contrasted to both the control subjects as well as those patients in the attenuated syndrome stage. Overall, patients who were diagnosed as more advanced in terms of the clinical stage of their illness, exhibited the greatest grey matter volume loss of all groups.</p> <p>Conclusions</p> <p>This study suggests that, in terms of frontal grey matter changes, a major transition point may occur in the course of affective illness between early attenuated syndromes and later discrete illness stages.</p
The Study of Ketamine for Youth Depression (SKY-D): study protocol for a randomised controlled trial of low-dose ketamine for young people with major depressive disorder
Background: Existing treatments for young people with severe depression have limited effectiveness. The aim of the Study of Ketamine for Youth Depression (SKY-D) trial is to determine whether a 4-week course of low-dose subcutaneous ketamine is an effective adjunct to treatment-as-usual in young people with major depressive disorder (MDD). Methods: SKY-D is a double-masked, randomised controlled trial funded by the Australian Government’s National Health and Medical Research Council (NHMRC). Participants aged between 16 and 25 years (inclusive) with moderate-to-severe MDD will be randomised to receive either low-dose ketamine (intervention) or midazolam (active control) via subcutaneous injection once per week for 4 weeks. The primary outcome is change in depressive symptoms on the Montgomery-Åsberg Depression Rating Scale (MADRS) after 4 weeks of treatment. Further follow-up assessment will occur at 8 and 26 weeks from treatment commencement to determine whether treatment effects are sustained and to investigate safety outcomes. Discussion: Results from this trial will be important in determining whether low-dose subcutaneous ketamine is an effective treatment for young people with moderate-to-severe MDD. This will be the largest randomised trial to investigate the effects of ketamine to treat depression in young people. Trial registration: Australian and New Zealand Clinical Trials Registry ID: ACTRN12619000683134. Registered on May 7, 2019. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377513
Recommended from our members
No Alterations of Brain Structural Asymmetry in Major Depressive Disorder: An ENIGMA Consortium Analysis
OBJECTIVE: Asymmetry is a subtle but pervasive aspect of the human brain, and it may be altered in several psychiatric conditions. MRI studies have shown subtle differences of brain anatomy between people with major depressive disorder and healthy control subjects, but few studies have specifically examined brain anatomical asymmetry in relation to this disorder, and results from those studies have remained inconclusive. At the functional level, some electroencephalography studies have indicated left fronto-cortical hypoactivity and right parietal hypoactivity in depressive disorders, so aspects of lateralized anatomy may also be affected. The authors used pooled individual-level data from data sets collected around the world to investigate differences in laterality in measures of cortical thickness, cortical surface area, and subcortical volume between individuals with major depression and healthy control subjects.
METHODS: The authors investigated differences in the laterality of thickness and surface area measures of 34 cerebral cortical regions in 2,256 individuals with major depression and 3,504 control subjects from 31 separate data sets, and they investigated volume asymmetries of eight subcortical structures in 2,540 individuals with major depression and 4,230 control subjects from 32 data sets. T1-weighted MRI data were processed with a single protocol using FreeSurfer and the Desikan-Killiany atlas. The large sample size provided 80% power to detect effects of the order of Cohen's d=0.1.
RESULTS: The largest effect size (Cohen's d) of major depression diagnosis was 0.085 for the thickness asymmetry of the superior temporal cortex, which was not significant after adjustment for multiple testing. Asymmetry measures were not significantly associated with medication use, acute compared with remitted status, first episode compared with recurrent status, or age at onset.
CONCLUSIONS: Altered brain macro-anatomical asymmetry may be of little relevance to major depression etiology in most cases
Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes
Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years
Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns
Widespread white matter microstructural differences in schizophrenia across 4322 individuals:Results from the ENIGMA Schizophrenia DTI Working Group
The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.Molecular Psychiatry advance online publication, 17 October 2017; doi:10.1038/mp.2017.170
ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing
A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research
Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study.
Predictive models have succeeded in distinguishing between individuals with Alcohol use Disorder (AUD) and controls. However, predictive models identifying who is prone to develop AUD and the biomarkers indicating a predisposition to AUD are still unclear. Our sample (n = 656) included offspring and non-offspring of European American (EA) and African American (AA) ancestry from the Collaborative Study of the Genetics of Alcoholism (COGA) who were recruited as early as age 12 and were unaffected at first assessment and reassessed years later as AUD (DSM-5) (n = 328) or unaffected (n = 328). Machine learning analysis was performed for 220 EEG measures, 149 alcohol-related single nucleotide polymorphisms (SNPs) from a recent large Genome-wide Association Study (GWAS) of alcohol use/misuse and two family history (mother DSM-5 AUD and father DSM-5 AUD) features using supervised, Linear Support Vector Machine (SVM) classifier to test which features assessed before developing AUD predict those who go on to develop AUD. Age, gender, and ancestry stratified analyses were performed. Results indicate significant and higher accuracy rates for the AA compared with the EA prediction models and a higher model accuracy trend among females compared with males for both ancestries. Combined EEG and SNP features model outperformed models based on only EEG features or only SNP features for both EA and AA samples. This multidimensional superiority was confirmed in a follow-up analysis in the AA age groups (12-15, 16-19, 20-30) and EA age group (16-19). In both ancestry samples, the youngest age group achieved higher accuracy score than the two other older age groups. Maternal AUD increased the model's accuracy in both ancestries' samples. Several discriminative EEG measures and SNPs features were identified, including lower posterior gamma, higher slow wave connectivity (delta, theta, alpha), higher frontal gamma ratio, higher beta correlation in the parietal area, and 5 SNPs: rs4780836, rs2605140, rs11690265, rs692854, and rs13380649. Results highlight the significance of sampling uniformity followed by stratified (e.g., ancestry, gender, developmental period) analysis, and wider selection of features, to generate better prediction scores allowing a more accurate estimation of AUD development
Recommended from our members
Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 3-90 years
Abstract: Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalised on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine the age-related morphometric trajectories of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum early in life; the volume of the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the thalamus, amygdala and the hippocampus remained largely stable (with some degree of decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan. Significant age-related increase in inter-individual variability was found for the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to derive risk predictions for the early identification of diverse clinical phenotypes
- …