183 research outputs found
Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens
SummaryBackgroundThe nasal vaccine candidate (NASVAC), comprising hepatitis B virus (HBV) surface (HBsAg) and core antigens (HBcAg), has been shown to be highly immunogenic in animal models.MethodsA phase I double-blinded, placebo-controlled randomized clinical trial was carried out in 19 healthy male adults with no serologic markers of immunity/infection to HBV. This study was aimed at exploring the safety and immunogenic profile of nasal co-administration of both HBV recombinant antigens. The trial was performed according to Good Clinical Practice guidelines. Participants ranged in age from 18 to 45 years and were randomly allocated to receive a mixture of 50μg HBsAg and 50μg HBcAg or 0.9% physiologic saline solution, as a placebo, via nasal spray in a five-dose schedule at 0, 7, 15, 30, and 60 days. A total volume of 0.5ml was administered in two dosages of 125μl per nostril. Adverse events were actively recorded 1h, 6h, 12h, 24h, 48h, 72h, 7 days and 30 days after each dose. Anti-HBs and anti-HBc titers were evaluated using corresponding ELISA kits at days 30 and 90.ResultsThe vaccine candidate was safe and well tolerated. Adverse reactions included sneezing (34.1%), rhinorrhea (12.2%), nasal stuffiness (9.8%), palate itching (9.8%), headache (9.8%), and general malaise (7.3%). These reactions were all self-limiting and mild in intensity. No severe or unexpected events were recorded during the trial. The vaccine elicited anti-HBc seroconversion in 100% of subjects as early as day 30 of the immunization schedule, while a seroprotective anti-HBs titer (≥10IU/l) was at a maximum at day 90 (75%). All subjects in the placebo group remained seronegative during the trial.ConclusionThe HBsAg–HBcAg vaccine candidate was safe, well tolerated and immunogenic in this phase I study in healthy adults. To our knowledge, this is the first demonstration of safety and immunogenicity for a nasal vaccine candidate comprising HBV antigens
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
Operations of and Future Plans for the Pierre Auger Observatory
Technical reports on operations and features of the Pierre Auger Observatory,
including ongoing and planned enhancements and the status of the future
northern hemisphere portion of the Observatory. Contributions to the 31st
International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
- …