119 research outputs found

    Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction

    Get PDF
    The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction

    The Thermodynamics Of Formation Of A 3-strand, Dna 3-way Junction Complex

    Get PDF
    Isothermal titration calorimetry (ITC) is used to study the thermodynamics of assembly of the three DNA oligonucleotides S1 (5\u27GCCTGCCACCGC), S2 (5\u27-GCGGTGCGTCCG), and S3AA (5\u27-CGGACGAAGCAGGC) to form a three-way junction (TWJ) complex consisting of three double-helical arms radiating from a junction region having two unpaired adenosines in one strand (S3AA). The thermodynamics of assembly were measured for three different orders of addition of the component oligonucleotides at four temperatures between 10 and 25 degrees C. At each temperature studied, the overall values of Delta H, Delta S degrees, and Delta G degrees for assembly of the complex from the component single strands were found to be independent of the order of addition. The enthalpy of binding, Delta H, was found to be linearly dependent on temperature. From the temperature dependence of Delta H, the change in heat capacity Delta C-p, for the overall assembly of three strands to form the junction complex was calculated and found to be-1.6 kcal mol(-1) K-1. This work represents the first attempt to evaluate the thermodynamics of DNA TWJ formation by ITC

    Effects of Full-Length Borealin on the Composition and Protein-Protein Interaction Activity of a Binary Chromosomal Passenger Complex

    Get PDF
    The chromosomal passenger complex (CPC) comprises at least four protein components and functions at various cellular localizations during different mitotic stages to ensure correct chromosome segregation and completion of cytokinesis. Borealin, the most recently identified member of the CPC, is an intrinsically unstructured protein of low solubility and stability. Recent reports have demonstrated the formation binary or ternary CPC sub-complexes incorporating short Borealin fragments in vitro. Using isothermal titration calorimetry, we show that full-length Borealin, instead of a Borealin fragment possessing the complete Survivin and INCENP-recognition sequence, is required for the composition of a Borealin-Survivin complex competent to interact with INCENP. In addition, we show evidence that full-length Borealin, which forms high-order oligomers in its isolated form, is a monomer in the Borealin-Survivin CPC sub-complex

    Potent and selective inhibition of SH3 domains with dirhodium metalloinhibitors

    Get PDF
    Src-family kinases (SFKs) play important roles in human biology and are key drug targets as well. However, achieving selective inhibition of individual Src-family kinases is challenging due to the high similarity within the protein family. We describe rhodium(II) conjugates that deliver both potent and selective inhibition of Src-family SH3 domains. Rhodium(II) conjugates offer dramatic affinity enhancements due to interactions with specific and unique Lewis-basic histidine residues near the SH3 binding interface, allowing predictable, structure-guided inhibition of SH3 targets that are recalcitrant to traditional inhibitors. In one example, a simple metallopeptide binds the Lyn SH3 domain with 6 nM affinity and exhibits functional activation of Lyn kinase under biologically relevant concentrations (EC50 ∼ 200 nM)

    Zoonotic causes of febrile illness in malaria endemic countries:a systematic review

    Get PDF
    Fever is one of the most common reasons for seeking health care globally and most human pathogens are zoonotic. We conducted a systematic review to describe the occurrence and distribution of zoonotic causes of human febrile illness reported in malaria endemic countries. We included data from 53 (48·2%) of 110 malaria endemic countries and 244 articles that described diagnosis of 30 zoonoses in febrile people. The majority (17) of zoonoses were bacterial, with nine viruses, three protozoa, and one helminth also identified. Leptospira species and non-typhoidal salmonella serovars were the most frequently reported pathogens. Despite evidence of profound data gaps, this Review reveals widespread distribution of multiple zoonoses that cause febrile illness. Greater understanding of the epidemiology of zoonoses in different settings is needed to improve awareness about these pathogens and the management of febrile illness

    Calcium-binding protein S100A6 interaction with VEGF receptor integrates signaling and trafficking pathways

    Get PDF
    The mammalian endothelium which lines all blood vessels responds to soluble factors which control vascular development and sprouting. Endothelial cells bind to vascular endothelial growth factor A via two different receptor tyrosine kinases (VEGFR1, VEGFR2) which regulate such cellular responses. The integration of VEGFR signal transduction and membrane trafficking is not well understood. Here, we used a yeast-based membrane protein screen to identify VEGFR-interacting factor(s) which modulate endothelial cell function. By screening a human endothelial cDNA library, we identified a calcium-binding protein, S100A6, which can interact with either VEGFR. We found that S100A6 binds in a calcium-dependent manner to either VEGFR1 or VEGFR2. S100A6 binding was mapped to the VEGFR2 tyrosine kinase domain. Depletion of S100A6 impacts on VEGF-A-regulated signaling through the canonical mitogen-activated protein kinase (MAPK) pathway. Furthermore, S100A6 depletion caused contrasting effects on biosynthetic VEGFR delivery to the plasma membrane. Co-distribution of S100A6 and VEGFRs on tubular profiles suggest the presence of transport carriers that facilitate VEGFR trafficking. We propose a mechanism whereby S100A6 acts as a calcium-regulated switch which facilitates biosynthetic VEGFR trafficking from the TGN-to-plasma membrane. VEGFR-S100A6 interactions thus enable integration of signaling and trafficking pathways in controlling the endothelial response to VEGF-A

    T-cell receptor early signalling complex activation in response to interferon-α receptor stimulation

    Get PDF
    Signalling through the IFNαR (interferon-α receptor) and TCR (T-cell receptor) in Jurkat T lymphocytes results in distinct immune responses. Despite this both receptors elicit ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) phosphorylation. Vav and Slp76 are shown to be required for IFNα (interferon-α)-stimulated ERK activity. These form a subset of proteins which behave identically on stimulation of both receptors. TCR deletion abrogates IFNαR-stimulated MAPK activity, whereas the canonical JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway is unaffected. Thus recruitment of the intact TCR ESC (early signalling complex) is necessary for this downstream MAPK response. Despite using a common ESC, stimulation of the IFNαR does not produce the transcriptional response associated with TCR. Up-regulation of the MAPK pathway by IFNαR might be important to ensure that the cell responds to only one stimulant

    Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity.

    Get PDF
    Although electrostatic interactions between negatively-charged ferredoxin (Fd) and positively-charged sulfite reductase (SiR) have been predominantly highlighted to characterize complex formation, the detailed nature of intermolecular forces remains to be fully elucidated. We herein investigated interprotein forces for formation of an electron-transfer complex between Fd and SiR and their relationship to SiR activity using various approaches over NaCl concentrations between 0 and 400 mM. Fd-dependent SiR activity assays revealed a bell-shaped activity curve with a maximum around 40-70 mM NaCl and a reverse bell-shaped dependence of interprotein affinity. Meanwhile, intrinsic SiR activity, as measured in a methyl viologen-dependent assay, exhibited saturation above 100 mM NaCl. Thus, two assays suggested that interprotein interaction is crucial in controlling Fd-dependent SiR activity. Calorimetric analyses showed the monotonic decrease in interprotein affinity on increasing NaCl concentrations, distinguished from a reverse bell-shaped interprotein affinity observed from Fd-dependent SiR activity assay . Furthermore, Fd:SiR complex formation and interprotein affinity were thermodynamically adjusted by both enthalpy and entropy through electrostatic and non-electrostatic interactions. A residue-based NMR investigation on addition of SiR to 15N-labeled Fd at the various NaCl concentration also demonstrated that a combination of electro- and non-electrostatic forces stabilized the complex with similar interfaces and modulated the binding affinity and mode. Our findings elucidate that non-electrostatic forces are also essential for the formation and modulation of the Fd:SiR complex. We suggest that a complex configuration optimized for maximum enzymatic activity near physiological salt conditions is achieved by structural rearrangement through controlled non-covalent interprotein interactions

    Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions

    Get PDF
    Item does not contain fulltextMicroscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science
    corecore