

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Zoonotic causes of febrile illness in malaria endemic countries

Citation for published version:

Halliday, JEB, Carugati, M, Snavely, M, Allen , K, Beamesderfer, J, Ladbury, G, Hoyle, D, Holland, P, Crump, JA, Cleaveland, S & Rubach , MP 2020, 'Zoonotic causes of febrile illness in malaria endemic countries: a systematic review', The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(19)30629-2

Digital Object Identifier (DOI):

10.1016/S1473-3099(19)30629-2

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: The Lancet Infectious Diseases

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Elsevier Editorial System(tm) for The Lancet

Infectious Diseases

Manuscript Draft

Manuscript Number: THELANCETID-D-18-01101R1

Title: Zoonotic causes of febrile illness in malaria endemic countries: a systematic review

Article Type: Unsolicited Review

Corresponding Author: Dr. Jo E.B. Halliday, PhD

Corresponding Author's Institution: University of Glasgow

First Author: Jo E.B. Halliday, PhD

Order of Authors: Jo E.B. Halliday, PhD; Manuela Carugati; Michael Snaveley; Kathryn Allan, PhD; Julia Beamesderfer; Georgia Ladbury, PhD; Deborah V Hoyle, PhD; Paul Holland; John A Crump, MD; Sarah Cleaveland, PhD; Matthew P Rubach, MD

Abstract: Fever is one of the most common reasons for healthcare seeking globally and the majority of human pathogens are zoonotic. We conducted a systematic review to describe the occurrence and distribution of zoonotic causes of human febrile illness reported in malaria endemic countries. Articles included in the review yielded data from 53 (48.2%) of 110 malaria endemic countries. The 244 articles included described diagnosis of 30 zoonoses in febrile people. The majority of zoonoses were bacterial (n=17), with viruses (n=9), protozoa (n=3) and helminths (n=1) also identified. Leptospira spp. and nontyphoidal Salmonella serovars were the most frequently reported pathogens. Despite evidence of profound data gaps, this review reveals widespread distribution of a diverse range of zoonotic causes of febrile illness. Greater understanding of the epidemiology of zoonoses in different settings is needed to improve awareness and management of the multiple zoonotic causes of febrile illness.

1 2 3	Zoonotic causes of febrile illness in malaria endemic countries: a systematic review
4 5 6 7 8	Authors Jo E B Halliday, Manuela Carugati, Michael E Snavely, Kathryn J Allan, Julia Beamesderfer, Georgia A F Ladbury, Deborah V Hoyle, Paul Holland, John A Crump, Sarah Cleaveland, Matthew P Rubach.
9 10 11 12 13	Affiliations Jo E B Halliday (PhD): Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
14 15 16 17	Manuela Carugati (MD): Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, United States of America; Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Division of Infectious Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
18 19 20 21	Michael E Snavely (MD): Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America.
22 23 24 25	Kathryn J Allan (PhD): Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
25 26 27 28	Julia Beamesderfer: Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
20 29 30 31 32	Georgia A F Ladbury (PhD): Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
33 34 35	Deborah V Hoyle (PhD): Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK.
36 37 38 39	Paul Holland: Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
40 41 42 43 44 45	John A Crump (MD): Centre for International Health, University of Otago, Dunedin, New Zealand; Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, United States of America; Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America; Kilimanjaro Christian Medical University College, Moshi, Tanzania.

- 46 Sarah Cleaveland (PhD): Boyd Orr Centre for Population and Ecosystem Health, Institute of
- 47 Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow,
- 48 United Kingdom.
- 49
- 50 Matthew P Rubach (MD): Division of Infectious Diseases, Duke University Medical Center,
- 51 Durham, North Carolina, United States of America; Kilimanjaro Christian Medical Centre,
- 52 Moshi, Tanzania; Duke Global Health Institute, Duke University, Durham, North Carolina,
- 53 United States of America. Programme in Emerging Infectious Diseases, Duke-National
- 54 University of Singapore Medical School, Singapore.
- 55
- 56 Correspondence to
- 57 Dr. Jo E.B. Halliday, Boyd Orr Centre for Population and Ecosystem Health, Institute of
- 58 Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow,
- 59 G12 8QQ, United Kingdom.
- 60 E-mail address: jo.halliday@glasgow.ac.uk
- 61 <u>Phone: +44 (0)141 330 5741</u>
- 62

Abstract 64

- Fever is one of the most common reasons for healthcare seeking globally and the majority of 65
- human pathogens are zoonotic. We conducted a systematic review to describe the occurrence 66
- 67 and distribution of zoonotic causes of human febrile illness reported in malaria endemic
- 68 countries. Articles included in the review yielded data from 53 (48.2%) of 110 malaria
- 69 endemic countries. The 244 articles included described diagnosis of 30 zoonoses in febrile 70
- people. The majority of zoonoses were bacterial (n=17), with viruses (n=9), protozoa (n=3)71 and helminths (n=1) also identified. *Leptospira* spp. and nontyphoidal *Salmonella* serovars
- 72 were the most frequently reported pathogens. Despite evidence of profound data gaps, this
- 73 review reveals widespread distribution of a diverse range of zoonotic causes of febrile illness.
- 74 Greater understanding of the epidemiology of zoonoses in different settings is needed to
- 75 improve awareness and management of the multiple zoonotic causes of febrile illness.
- 76

77 Introduction

- Fever is one of the most common symptoms prompting healthcare seeking globally.¹⁻³ Fever 78
- 79 has myriad causes and their non-specific clinical presentation means that clinical history and
- 80 physical examination are often insufficient to accurately identify causal pathogens.¹
- 81 Limitations in laboratory services and available diagnostic tools further contribute to
- diagnostic challenges.⁴ In malaria-endemic countries, fever is often assumed to be due to 82
- malaria.⁵ The mortality and morbidity attributable to malaria remains considerable, but there 83
- is also evidence of widespread over-diagnosis within malaria-endemic areas.⁶⁻⁸ The 84
- recognized over-diagnosis of malaria together with declines in malaria incidence since the peak in global malaria deaths in 2004^{9,10} have prompted attention to non-malaria causes of fever in malaria-endemic areas.^{11,12} Zoonotic pathogens are likely to play a substantial role as 85 86
- 87
- causes of fever globally. Almost two-thirds of all human pathogens are zoonotic,¹³ and there 88
- is growing evidence that many zoonoses cause more cases of human febrile illness than 89
- previously appreciated.^{12,14-20} Improved understanding of the impacts and burdens of zoonotic 90
- causes of fever in malaria-endemic countries would provide the epidemiological evidence 91
- base for disease control program development and also influence diagnostic and treatment 92
- 93 algorithms for fever, with the potential to improve clinical outcomes. The aim of this study
- 94 was to systematically review the published literature to describe the occurrence and
- 95 distribution of reported zoonotic causes of human febrile illness in countries where malaria is
- 96 endemic.
- 97

98 **Methods**

99 Search strategy and selection criteria

- 100 The target literature for this systematic review was peer-reviewed published articles that
- 101 described the testing of one or more febrile person from malaria-endemic countries for one or
- 102 more zoonotic pathogen using robust diagnostic testing criteria to demonstrate acute
- 103 infection. Literature searches of the Medline and Embase databases were run using the
- 104 OvidSP gateway. Searches were limited to English language articles published in the period
- 105 2004 to 2019 inclusive, to span the period from the described peak of global malaria
- mortality in 2004 to present.⁹ The searches were last executed on 03 January 2019. Outputs 106
- of database searches were combined and de-duplicated using R.²¹ Additional details of 107 108 searches, screening, review, and data extraction processes are given in the appendix.
- 109

110 Three search concepts for 'fever,' 'zoonoses,' and 'malaria endemic countries' were 111 constructed. To construct the 'fever' concept the exploded subject heading and keywords 112 were combined using database appropriate syntax (e.g., exp Fever/ OR fever\$1.mp. OR 113 febrile.mp.). For the 'zoonoses' concept, a reference list of eligible zoonotic pathogens was compiled using lists of zoonotic diseases from the World Health Organization (WHO)²² and 114 World Organisation of Animal Health (OIE)²³ as well as literature-based searches to identify 115 frequently reported zoonotic causes of human fever. We conducted preliminary searches of 116 117 Medline and Embase using the search syntax '(exp Fever/ OR fever.mp.) AND (exp 118 Zoonoses/ OR zoonoses.mp OR zoonosis.mp)' limited to humans. Additional details of 119 search concept construction are given in the appendix. All pathogens identified through these 120 approaches were mapped to existing subject headings and keywords at the lowest taxonomic 121 level possible, typically genus or species. In instances where pathogen species or serovars 122 within the same genus varied in their zoonotic status, search concepts were constructed to 123 include all zoonotic and non-zoonotic species or serovars and articles relating to non-124 zoonotic species were excluded at the full text stage. The candidate pathogens were classified 125 to differentiate pathogens normatively acquired by people through direct or indirect 126 transmission from vertebrate animals to humans, as compared to pathogens where zoonotic 127 transmission has been recorded but where the majority of human infections are not acquired through zoonotic transmission. We classified pathogens using the stages in the process 128 towards human endemicity defined in Wolfe et al.²⁴ Pathogens classified at stages one to 129 three (normatively acquired through zoonotic transmission) were retained (appendix). The 130 131 search concept for each pathogen or disease included exploded subject headings for both the 132 pathogen and the diseases caused in humans and terms for both pathogen and disease were 133 also included as keywords (e.g., exp anthrax/ OR anthrax.mp. OR exp Bacillus anthracis/ OR 134 bacillus anthracis.mp.). The list of pathogen or disease specific searches was combined using 135 OR syntax to generate the full 'zoonoses' search concept (appendix). The 'malaria endemic 136 countries' concept was constructed by mapping country names for countries defined as 137 malaria endemic in the WHO global malaria reports for the years 2005 and 2016 to Medline and Embase subject headings.^{10,25} Each country was searched for using both the exploded 138 subject heading where possible and keywords in all cases (e.g., exp Kenya/OR Kenya.mp.). 139 The three concepts, fever,' 'zoonoses,' and 'malaria endemic countries' were combined using 140 141 AND operators and database specific syntax (appendix).

142

143 Study selection and validity assessment

144 Articles that reported the diagnosis of a zoonotic pathogen in a population from a malaria 145 endemic country defined on the basis of febrile illness were selected for full-text review. 146 Conference proceedings and records that did not include any abstract text or an abstract in 147 English were excluded. Abstracts and titles were screened by two independent reviewers (two 148 of MC, MES, KJA, GAFL, DVH, JAC, SC and MPR) using pre-defined criteria (appendix 149 table S1). Articles were selected for inclusion if the abstract or title described clinical and/or 150 laboratory evaluation of a group of ≥ 2 people all of whom had fever and some of whom 151 were diagnosed of one or more pathogens from the reference list of zoonotic pathogens (table 152 1). Abstracts referring to the use of blood culture were also retained at this stage even if a 153 zoonosis was not explicitly mentioned in the abstract (appendix table S1). When two 154 reviewers disagreed on article classification, a third independent reviewer (one of JEBH, MC, 155 MES, GAFL, DVH or MPR) resolved the tiebreak. Full text articles were sought for all

156 articles not excluded during abstract review steps. All articles were searched for using

- 157 PubMed, Google and the libraries of the University of Glasgow, Duke University,
- 158 Washington University in St. Louis, and US Centers for Disease Control and Prevention (US
- 159 CDC). Articles were excluded if a full text for the citation could not be obtained. Two
- 160 independent reviewers (two of, JEBH, MC, MES, JB and MPR) evaluated full text articles
- using pre-defined inclusion and exclusion criteria (table 2, appendix table S2). Strict
- 162 diagnostic case definitions based on WHO and US CDC guidelines ensured that only studies
- 163 reporting robust and specific diagnostic methods were retained (table 2). Articles were
- 164 excluded if they did not meet one or more of the study inclusion criteria or if they did meet at
- 165 least one of the study exclusion criteria (table 2). In cases where reviewers disagreed on
- article classification, discrepancies were checked and resolved by JEBH in discussion withother reviewers.
- 168
- Table 1. Zoonoses included in the review, with details of species and serovars excludedwhere appropriate.

Pathogen	Species, subspecies, and serovars excluded	Pathogen
		type ¹⁵
Alphaviruses	All species excluded with the exception of Eastern equine encephalitis virus (EEEV) complex, Venezuelan equine encephalitis (VEEV) complex, and Western equine encephalitis (WEEV) complex	Virus
Anaplasma spp.	-	Bacteria
Aphthoviruses	All species excluded with the exception of Foot-and- mouth disease virus	Virus
Avulaviruses	All species excluded with the exception of Newcastle disease virus	Virus
Babesia spp.	-	Protozoa
Bacillus antrhracis	-	Bacteria
Bartonella spp.	B. bacilliformis and B. quintana excluded	Bacteria
Borrelia spp.	B. recurrentis excluded	Bacteria
Bovine	-	Prion
spongiform		
encephalopathy		
Brucella spp.	-	Bacteria
Burkholderia spp.	B. cepacia complex and B. pseudomallei excluded	Bacteria
<i>Campylobacter</i> spp.	-	Bacteria
Chlamydia spp.	All species excluded with the exception of <i>C. psittaci</i>	Bacteria
Coxiella burnetii	-	Bacteria
<i>Cryptosporidium</i> spp.	C. hominis excluded	Protozoa
Ebolavirus	-	Virus
Echinococcus spp.	-	Helminth
Ehrlichia spp.	-	Bacteria
Enteroviruses	All species excluded with the exception of Swine vesicular disease virus	Virus
Escherichia spp.	All species excluded with the exception of Shiga-toxin producing <i>E. coli</i>	Bacteria

Flaviviruses	All species excluded with the exception of Japanese encephalitis virus (JEV), West Nile virus (WNV), and Tick-borne-encephalitis virus.	Virus
Francisella spp.	All species excluded with the exception of <i>F</i> . <i>tularensis</i>	Bacteria
Hantavirus	-	Virus
Henipaviruses	-	Virus
Lassa virus	-	Virus
Leishmania spp.	L. donovani excluded if detected in India	Protozoa
Leptospira spp.	-	Bacteria
<i>Listeria</i> spp.	-	Bacteria
Lyssavirus	All species excluded with the exception of Rabies virus	Virus
Marburg virus	-	Virus
Mycobacterium	All species excluded with the exception of <i>M. bovis</i> and <i>M. avis</i>	Bacteria
Nairovirus	All species excluded with the exception of Crimean- Congo haemorrhagic fever virus	Virus
<i>Orientia</i> ¹	-	Bacteria
Orthopox viruses	All species excluded with the exception of Cowpox virus, Monkeypox virus, and Vaccinia virus	Virus
Pasteurella spp.	-	Bacteria
Phleboviruses	All species excluded with the exception of Rift Valley fever (RVF) virus	Virus
<i>Rickettsia</i> spp. ²	R. prowazekii excluded	Bacteria
Salmonella spp.	All species, subspecies, and serovars excluded with the exception of nontyphoidal <i>Salmonella</i> serovars	Bacteria
Schistosoma spp.	S. haematobium, S. intercalatum, and S. mekongi.excluded	Helminth
<i>Streptobacillus</i>	-	Bacteria
Streptococcus spp.	All species excluded with the exception of <i>S. canis</i> , <i>S. suis</i> , <i>S. equi</i> , and <i>S. iniae</i>	Bacteria
<i>Taenia</i> spp.		Helminth
Toxocara		Helminth
Toxoplasma gondii	-	Protozoa
Trichinella spp.	-	Helminth
<i>Trypanosoma</i> spp.	All species excluded with the exception of <i>T. brucei</i> rhodesiense and <i>T. cruzi</i>	Protozoa
Varicelloviruses	All species excluded with the exception of Pseudorabies virus	Virus
Vesiculoviruses	All species excluded with the exception of Vesicular Stomatitis virus	Virus
Yersinia spp.	All species excluded with the exception of <i>Y. pestis</i> , <i>Y. enterocolitica</i> and <i>Y. pseudotuberculosis</i>	Bacteria

171 ¹ Orientia was covered by search syntax for *Rickettsia*.

² For data extraction, data on *Rickettsia* were classified as *Rickettsia* (SFGR) or *Rickettsia*

- 173 (TGR) where the data resolution allowed. When details on the species of *Rickettsia* were not 174 given, these data were classified as *Rickettsia* spp.
- 175

176	Table 2. Inclusion	and exclusion	criteria for	full text review
1/0	1 abic 2. metusion	and exclusion	cificita for	Iull text leview

Outcome	Criterion
Inclusion:	• Febrile population (≥ 2 people with a fever, defined as body temperature $\geq 38.0^{\circ}$ C)
	• Diagnosis of one or more zoonotic pathogens from pre-defined reference list of eligible aetiological agents (table 1)
	Diagnostic test criteria:
	i) Culture of the pathogen from sample(s) collected from a febrile person
	ii) Direct detection of the pathogen (e.g., by PCR based techniques) from sample(s) collected from a febrile person
	 iii) Serological diagnosis of acute infection based on testing of both acute and convalescent phase serum samples and demonstration of seroconversion
	 iv) Diagnosis of acute infection based on detection of pathogen-specific antibody or antigens in a single serum sample only for selected pathogens, for which widely accepted case definitions deemed pathogen-specific antibody or antigen detection sufficiently accurate¹ v) IgM detection in cerebrospinal fluid (CSF) for selected pathogens for which widely accepted case definitions include IgM detection in CSF²
Exclusion:	 Failure to meet inclusion criteria described above
	• Lack of study detail e.g., number of people tested for each pathogen
	Negative diagnostic test results in all patients
	• Study designed to evaluate diagnostic test and/or vaccine performance without presenting novel data on number or proportion of patients
	of febrile people.
	• Study described as a group of ≥ 2 people principally classified based on a shared (100% frequency) aetiological diagnosis.
	• Review

177 The following met study criteria for valid diagnostics for pathogen detection based on single sera only: *Leptospira* spp. agglutination titer of \geq 800 by microscopic agglutination test in 178 one serum specimen ²⁶; detection of Hantavirus-specific IgM in a serum sample ²⁷; detection 179 180 of virus-specific IgM antibodies in serum with confirmatory virus-specific neutralizing antibodies for Eastern equine encephalitis virus (EEEV), West Nile virus (WNV), Western 181 equine encephalitis virus (WEEV), and Venezuelan equine encephalitis virus (VEEV)²⁸; 182 identification of lyssavirus specific antibody by indirect fluorescent antibody test or complete 183 rabies virus neutralization at 1:5 dilution in the serum of an unvaccinated person ²⁹; detection 184 of viral antigens in blood by enzyme-linked immunosorbent assay for Ebola ^{30,31}, Marburg 185 ^{31,32}, Lassa ^{31,33}, and Crimean-Congo haemorrhagic fever viruses ³¹; detection of Rift Valley 186 fever antigens or IgM in blood by enzyme-linked Immunosorbent assay³⁴; and 187 ² IgM detection in CSF was considered a valid diagnostic for EEEV, Japanese encephalitis 188 virus (JEV), rabies virus, WEEV, WNV and VEEV ^{28,29,35}. 189

190

191 Data extraction and bias assessment

192 Data extraction was conducted independently by one of two reviewers (JEBH and MC). 193 Article-level data were extracted on the location (country and WHO regional classification), ³⁶ study period (start and end year of data collection), and eligibility criteria used in the study. 194 195 Each population was classified according to the clinical presentation as undifferentiated or 196 differentiated. Differentiated febrile populations were further classified as: i) febrile 197 neurologic; ii) febrile haemorrhagic; iii) febrile gastrointestinal; iv) febrile respiratory; v) specific febrile aetiology suspected; vi) febrile co-morbid group (i.e., malignancy, 198 immunocompromise).³⁷⁻³⁹ Data extracted on each population included any demographic 199 restriction of the study population, the age range of the study participants, whether the 200 201 population was described as inpatient or outpatient, urban or rural, and whether data were 202 collected during a reported disease outbreak or not. To extract data on zoonotic pathogens, 203 every article was classified to record if the study reported looking for or diagnosing one or 204 more febrile individuals with any of the zoonotic pathogens included in the study reference 205 list (table 1), irrespective of the diagnostics used. Additional data were extracted when the 206 article reported application of a diagnostic approach that met study validity criteria. For each 207 combination of article and pathogen, details of the valid diagnostic methods used, the type 208 and number of samples tested, and the number of positive samples were recorded (appendix 209 table S3, S4). In instances where more than one valid diagnostic method was used in the 210 same study for a given pathogen (e.g., culture-based and serologic case definitions), data on 211 the total number of individuals tested and positive for each pathogen using valid methods 212 were aggregated. Some articles contributed data on more than one pathogen but no data on 213 participant numbers were extracted for pathogens not identified using diagnostic approaches 214 that met study inclusion criteria.

215

216 The principal source of potential bias affecting the interpretation of the findings of this study 217 is the lack of standardization of the febrile populations included in different studies. Criteria 218 were defined to classify potential bias in study representativeness and prevalence estimate precision (appendix table S5).⁴⁰⁻⁴² The representativeness bias criterion was designed to 219 220 classify the representativeness of the study population, relative to the general population 221 where the study was conducted. This was based on the description of the febrile population, 222 the restriction (if any) of the study sample to specific clinical or demographic sub-populations 223 and the reporting of disease outbreaks at the time of data collection. Each population was 224 classified as follows: i) populations classified as undifferentiated febrile with no demographic 225 restriction and no clinical aetiologies excluded were classified as low risk; ii) populations 226 classified as undifferentiated febrile with demographic restriction and/or reporting exclusion 227 of specific aetiologies or syndromes were classified as medium risk; iii) differentiated febrile 228 populations and those from studies reporting disease outbreaks at the time of data collection 229 were classified as high risk. The second, outcome-level, bias criterion was designed to 230 classify risk of bias in the estimated precision of the proportion of fevers attributed to each 231 pathogen. Thresholds used for this criterion are the sample sizes needed to estimate 232 proportions of 50% and 10% with 95% confidence and 0.05 precision respectively, assuming 233 an infinite population size. Each population was classified as follows: i) proportion estimates 234 based on a sample size of greater than or equal to 385 were classified as low risk; ii) 235 proportion estimates based on a sample size of greater than 385 but less than 139 were 236 classified as medium risk; iii) proportion estimates based on a sample size of less than 139 237 were classified as high risk.

- 238
- 239 Additional potential sources of bias included variation in the pathogens tested for, and
- 240 variation in the diagnostic approaches applied. For included studies, data on the pathogens
- 241 tested for (with any diagnostic approach) were summarized alongside pathogens for which
- 242 diagnostic test criteria were met to qualitatively evaluate the biases introduced by only
- 243 extracting data on pathogens diagnosed using methods meeting study inclusion criteria.
- 244

245 **Data analysis**

- 246 Extracted data on the zoonotic pathogens diagnosed using valid methods, number of
- 247 individuals tested for each pathogen, and number of individuals positive for each pathogen
- 248 were used to estimate the proportion of fevers attributable to each pathogen for each unique 249 pathogen and study combination. All analyses were conducted in R²¹ and plots were made 250 using the package ggplot2.⁴³
- 251

252 **Role of the funding source**

253 The funders of the study had no role in study design, data collection, data analysis, data 254 interpretation, or writing of the report. The corresponding author had full access to all the

- 255 data in the study and had final responsibility for the decision to submit for publication.
- 256

257 **Results**

- 258 Database searches yielded a total of 16,332 and 10,574 records through Embase and Medline, 259 respectively, resulting in a total of 17,852 unique records following de-duplication (figure 1). 260
- A total of 4,531 (25.4%) records were excluded during pre-screening, 13,321 (74.6%)
- 261 records were screened and 962 (7.2%) of these were retained after title and abstract review.
- 262 In total, 718 (74.6%) articles were excluded during full text review and 244 (25.4%) articles 263 met all study inclusion criteria and were included (figure 1, appendix table S6).
- 264

265 Articles included in the review yielded data from 53 ($48 \cdot 2\%$) of the 110 malaria endemic

- 266 countries (figure 2). The majority of articles with a single country origin (n=235) reported
- 267 data from Africa (83 of 235 articles, 35.3%) or South-East Asia (81 of 235 articles, 34.5%)
- 268 (appendix table S7, figure S1). One hundred and six $(45 \cdot 1\%)$ of the 235 articles with a single
- 269 country origin were conducted in one of six dominant countries: India (n=31), United 270 Republic of Tanzania (n=22), Thailand, (n=20), Nepal (n=12), Bangladesh (n=11), and
- 271 Nigeria (n=10). The data reported in the review were gathered between 1994 and 2017
- 272 inclusive.
- 273
- 274 The 244 articles included for data extraction reported looking for and diagnosing 40 and 31
- 275 zoonoses, respectively, in these populations (figure 3). The number of included zoonoses was
- 276 reduced to 30 after the criteria for diagnostic testing approach were applied. The 244 articles
- 277 yielded data that met diagnostic test criteria for 30 zoonoses that included 17 bacterial
- 278 pathogens (56.7%), nine viruses (30.0%), three protozoa (10.0%), and one helminth (3.3%). 279
- Leptospira spp., nontyphoidal Salmonella serovars (NTS) and rickettsioses were the most 280 frequently reported bacteria, while Japanese encephalitis virus (JEV), Hantavirus, and West
- 281 Nile virus (WNV) dominated among reported viruses (figures 3, 4).
- 282
- 283 The number of febrile individuals included in each study population ranged from 4 to 13,845, 284 with a median of 300 (IQR: 120 - 812). In total, 309 records of zoonotic pathogens causing

- 285 fever were extracted from the 244 articles. The proportion of fevers attributed to each
- 286 pathogen reported ranged from <1.0% to 95.0% (figure 4). The risk of bias classification in
- 287 the precision of the proportion of fevers attributed to each zoonosis was 136 (44.0%) of 309
- 288 low risk, 79 (25.6%) of 309 medium risk, and 94 (30.4%) of 309 high risk.
- 289

290 Of the 244 studies, 87 (35.7%) described the clinical setting as inpatient, 36 (14.8%) as 291 outpatient, 39 (16.0%) as mixed, and 82 (33.6%) gave no clear classification of the clinical 292 setting. Thirty (12.3%) studies described the study area as urban, 59 (24.2%) as rural, 45 293 (18.4%) mixed or both, and 110(45.1%) gave no clear classification of the study area. 294 Eighteen (7.4%) studies included adult participants, 43 (17.6%) included children, 153 295 (62.7%) included both adults and children and 30 (12.3%) gave no clear classification of the 296 ages included. Of the 244 studies, twelve (4.9%) described a demographically restricted 297 population, 55 (22.5%) reported some exclusions from the population, and 32 (13.1%) 298 mentioned exclusion of malaria-infected individuals specifically (appendix table S6). Of the 299 244 studies, 73 (29.9%) reported looking for more than one zoonosis, 43 (17.6%) diagnosing 300 more than one zoonosis and 37 (15.2%) contributing data on more than one zoonosis. Of the 301 244 studies, 10 (4.1%) were described as outbreak investigations and 169 (69.3%) 302 populations were classified as undifferentiated febrile populations. Among the 75 303 differentiated populations, 36 (48.0%) had specific febrile aetiologies suspected, 17 (22.7%)304 were classified as febrile neurological, eight (10.7%) as comorbid populations, eight (10.7%)305 as febrile haemorrhagic, five (6.7%) as febrile gastrointestinal and one (1.3%) as febrile 306 respiratory. The associations between clinical presentation of febrile populations and the

307 subset of 25 pathogens identified in the differentiated populations are shown in figure 5. The 308 risk of bias classification in the representativeness of febrile populations was 121 (49.6%) of

- 309 244 low risk, 45 (18.4%,) of 244 medium risk, and 78 (32.0%,) of 244 high risk.
- 310

311 Discussion

312 This systematic review reveals diverse zoonoses causing febrile illness within multiple 313 malaria-endemic countries, often at high prevalence. However, sparse and patchy reporting 314 suggests that the prevalence of zoonoses is widely under-estimated. Knowledge of probable 315 infecting pathogen is crucial to inform clinical management of febrile illness and there is a

- 316 clear need for further investigation of the zoonotic causes of febrile illness to generate data
- 317 relevant to clinicians, epidemiologists, and health policy makers globally. This study should
- 318 generate greater awareness of the clinical importance of zoonoses and provide a pragmatic
- 319 starting point for actions to better manage these diseases, for example through improved
- 320 diagnostic and clinical treatment algorithms. These findings demonstrate the need for
- 321 enhanced epidemiological understanding of multiple zoonoses to inform disease prevention. 322

323 This review reveals substantial gaps in the evidence base, including a complete absence of

- eligible studies from more than half of the 110 countries included in the review (figure 2). 324
- 325 There are multiple steps and biases in the processes from a patient seeking care with febrile
- 326 illness to the publication of an English language scientific paper on the occurrence and
- 327 prevalence of a specific zoonosis that could be included in this review. The underlying
- 328 distribution and relative clinical importance of individual pathogens varies, as do patient
- 329 healthcare seeking behaviour, clinical, and patient awareness of different pathogens,
- 330 diagnostic capacities, and probability of publication. It is therefore not plausible to expect this
- 331 review to yield data on all zoonoses in all countries. However, considering the inclusion of

- 332 110 countries and construction of searches for 50 pathogens or pathogen groups, the
- 333 identification of just 244 eligible studies underscores the profound overall shortage of robust
- 334 quantitative data describing the role of any zoonoses as causes of fever in most malaria-
- 335 endemic countries.
- 336

337 The geographic variation in the distribution of studies by country (figure 2) and region 338 (appendix table S7, figure S2) is likely to be strongly influenced by variation in research and 339 publication effort. There is noticeable geographic segregation for some zoonoses, with NTS 340 and SFGR reported more frequently in Africa, and Leptospira spp., Orientia tsutsugamushi, 341 and typhus-group rickettsioses (TGR) reported more frequently in South-East Asia and 342 Western Pacific regions (appendix figure S2). For viruses, Lassa virus was reported only in 343 Africa and JEV predominantly in South-East Asia. The distribution of studies cannot be 344 interpreted as an accurate reflection of the underlying distribution of zoonotic pathogens, 345 their prevalence or clinical importance. The pathogens that are looked for depend on factors 346 such as the diagnostic capacity available, existing data, and local assessment of the likely 347 causes of febrile illness in a specific location. Once pathogens are identified in any location 348 there will likely be increased clinical, patient, and community awareness of those pathogens, 349 as well as improved diagnostic capacity to detect them. In this way, dogma about the 'known' 350 important causes of febrile illness in specific locations can arise and contribute to the neglect 351 of other pathogens. The findings of this review may help indicate potential gaps in what is 352 looked for and can highlight pathogens and locations where these dogmas should be 353 questioned.

354

355 The majority of the 30 zoonotic causes of fever contributing data for this review were 356 bacteria (56.7%). This proportion is greater than expected from the taxonomic distribution of all zoonotic pathogens, which comprise 30.1% bacteria⁴⁴ and also contrasts with the 357 taxonomic distribution of emerging zoonoses, which are dominated by viruses.¹³ This finding 358 359 reinforces the clinical importance of endemic bacterial zoonoses. The comparisons between 360 the number of articles that looked for, diagnosed, and contributed data for each of 40 361 zoonoses reveals the range of zoonotic pathogens investigated and indicates the relative 362 investigative effort used for each pathogen (figure 3). However, the figures for number of 363 articles where a pathogen was looked for but not identified must be interpreted with caution 364 given the high probability of reporting bias and how rarely negative results are reported. For 365 several pathogens, the number and proportion of articles that reported a zoonotic diagnosis 366 but did not contribute further data for analysis (because the diagnostic approaches described 367 did not meet study quality criteria) are substantial (figure 3). This demonstrates that for 368 many, predominantly bacterial pathogens, suboptimal diagnostic tests or imprecise case 369 definitions are in widespread use, highlighting the challenges of accurately quantifying 370 disease prevalence and comparing studies.

371

372 Persistent challenges in the diagnosis of febrile patients include limited laboratory capacity, 373 reliance on demonstration of seroconversion for confirmed diagnosis of many pathogens.

- 374 unsustainable costs associated with more advanced diagnostic technologies, and lack of
- 375 simple and affordable tests for the accurate and timely diagnosis of several zoonotic
- 376 pathogens. In addition, the delays in patient presentation that are typical in many resource
- 377 limited settings, low magnitude bacteraemia at presentation and, presentation of patients
- 378 during the immune phase of illness, all limit the sensitivity of culture or PCR-based

diagnostic approaches when available. These challenges necessitate syndromic approaches topatient management and broad-spectrum treatment. One specific issue relates to tetracycline

381 use. This study identified rickettsioses and *O. tsutsugamushi* as common causes of fever.

382 These would benefit from treatment with tetracyclines, which are not currently included in

the Integrated Management of Adolescent and Adult Illness (IMAI) algorithms for septic

- 384 shock and severe respiratory distress without shock.⁴⁵ In light of the extensive contribution of
- tetracycline-responsive infections to fever in malaria-endemic countries, revisions to clinical
- 386 guidelines may be warranted to suggest the empirical use of tetracyclines in addition to beta-387 lactams in scenarios where the infection with tetracycline-responsive pathogens cannot be
- 388

excluded.

389

390 The findings of this review show that one or more zoonotic causes of fever are likely to 391 present a threat to health in all of the countries included in this review. Only a small 392 proportion of the febrile populations included in the study were defined as demographically 393 restricted and most were not clinically differentiated. Even zoonoses commonly linked with 394 specific syndromes (e.g., Crimean-Congo haemorrhagic fever virus and JEV) were diagnosed 395 in undifferentiated populations and should thus be considered in the differential diagnosis of 396 undifferentiated febrile illness. Within populations at risk, it is important that aetiologic 397 studies are followed by epidemiologic risk factor studies to determine whether certain sub-398 groups are at higher risk for specific zoonotic diseases. Robust febrile illness surveillance 399 systems help inform local epidemiology and febrile illness management, and are also 400 essential for detection of disease outbreaks.⁴⁶

401

402 There are several important limitations to this study. We examined the contribution of 403 zoonotic pathogens to febrile illness only in malaria-endemic countries and excluded articles 404 not available in English from our analysis. The restriction of this review to English language 405 texts will have reduced the probability that studies from French and Spanish speaking 406 countries were included and may partially account for some gaps, such as the 23 countries in 407 Africa and 15 in the Americas for which no eligible studies were identified. Studies reporting 408 all negative test results were excluded. This strategy was motivated by the inevitable 409 influence of publication bias and challenges of systematically quantifying the non-reporting 410 of either diagnostic test performance or the non-detection of specific pathogens. Biases in 411 testing practices for different pathogens in different locations and with different clinical 412 febrile presentations will influence the pathogens looked for, detected and reported. The 413 application of diagnostic criteria that are strictly comparable across pathogens is not feasible. 414 In this study, strict diagnostic criteria were applied, preferentially including diagnostic 415 approaches with a high specificity, to minimize the influence of false positives within the 416 analyses. The bias assessments for study representativeness and precision in the estimates of 417 proportion of fevers attributable to a given pathogen both reveal that the majority of data 418 points had medium or high risk of one or both types of bias. This emphasizes the need for 419 cautious and essentially non-quantitative interpretation of the data extracted from these 420 studies. Many studies with risk of precision bias due to smaller sample size tended to report 421 the highest prevalences of disease attribution to a given pathogen (figure 5); and, 422 interestingly, these studies were often also classified as high risk for representativeness bias. 423 Figure 5 shows clear variation in risk of representativeness bias across pathogens, potentially 424 linked to variation in clinical presentation. For example, the majority of data points for 425 Japanese encephalitis virus and indeed all data points for Leishmania donovanii are

426 classified as high risk of representativeness bias. This review focused on studies reporting 427 diagnostic investigation of patient populations that were principally defined by fever and 428 populations principally defined by a common aetiological diagnosis were excluded (e.g., 429 populations defined by presence or suspicion of one or more zoonosis, some of whom were 430 febrile). This review therefore had an inherently low sensitivity for studies describing disease 431 outbreaks. This focus explains, for example, the absence of studies describing the 2014-2016 432 Ebola West Africa outbreak. The design of this review did not allow explicit investigation of 433 co-infections, either of zoonoses with malaria or of multiple zoonoses. Co-infections are 434 likely to be an important factor underlying both the distribution and prevalence of some zoonotic pathogens, including for example nontyphoidal *Salmonella* serovars.⁴⁷ Serological 435 436 diagnosis of acute infection based on testing of both acute and convalescent phase sera is 437 central to the confirmed diagnosis of multiple pathogens included in the study. As a 438 consequence, individuals who die prior to the collection of convalescent samples are unlikely 439 to contribute data (in the absence of other valid test options) and the proportions of fevers 440 attributable to pathogens with high probability of acute fatality will be under-estimated. 441 Furthermore, no validity criteria regarding the timing of sample collection for acute and 442 convalescent samples were imposed, leading potentially to false negative results (e.g., 443 seroconversion not detected because of premature convalescent sampling). For these reasons, 444 our findings are unlikely to capture the full extent of morbidity and mortality attributable to 445 zoonoses.

446

447 The data compiled in this review demonstrate the need to consider multiple zoonoses among 448 the potential causes of febrile illnesses in malaria-endemic countries. Different zoonoses are 449 likely to be important in different settings. Our study provides a starting point for improving 450 awareness of first the zoonoses that are known to contribute to febrile illness in different 451 malaria-endemic regions and second the fever-causing zoonoses with widespread distribution 452 that should be considered in patient evaluation. The demonstration of major data gaps should 453 encourage a more open-minded approach when considering zoonoses as a potential cause of 454 febrile illness. Continued efforts are needed to develop multi-pathogen diagnostics, ideally 455 with formats appropriate for point of care use. To avoid perpetuation of self-fulfilling 456 prophesies that can arise when only pathogens tested for (and detected) are assumed to be 457 present, the development and evaluation of such diagnostics should be informed by data 458 describing the pathogens present in specific settings and also the wider context. Untapped 459 sources of information on the distribution and occurrence of fever-causing zoonoses almost 460 certainly exist, particularly in the animal health sector. One Health efforts to share data and 461 knowledge between animal and human health sectors could help raise clinician awareness of locally relevant zoonoses, inform history taking, and guide diagnostic and management 462 463 decision making. Control of disease in animal populations and prevention of transmission 464 from animals to humans are likely to be the most effective ways to reduce human disease risk 465 with many zoonoses, necessitating active engagement with populations at risk to develop 466 sustainable disease control interventions. There are substantial challenges to clinicians and 467 epidemiologists in revealing the true impacts of many zoonoses. The enormous global burden of febrile illness and scope for improvements in the diagnosis and treatment of zoonotic 468 469 pathogens necessitate efforts to overcome these challenges and translate findings into 470 important public health gains. 471

Page 13 of 18

473 **Contributors**

- The author contributions are as follows. Study design: JEBH, KJA, JAC, SC, and MPR.
- 475 Searches, screening and article review: JEBH, MC, MES, KJA, JB, GAFL, DVH, PH, JAC,
- 476 SC, and MPR. Data extraction: JEBH and MC. Data analysis: JEBH. Manuscript writing:
- 477 JEBH, MC, MES, KJA, JAC, SC, and MPR.
- 478

479 **Declaration of interests**

- 480 JEBH reports grants from the Biotechnology and Biological Sciences Research Council, UK,
- 481 and collaboration with Arbor biosciences outside the submitted work. JAC reports grants
- 482 from United States National Institutes of Health and Biotechnology and Biological Sciences
- 483 Research Council, UK. MPR reports grants from United States National Institute for Allergy
- 484 and Infectious Diseases and contracted research with BioFire Defense, LLC, outside the
- 485 submitted work. Other authors declare they have no conflicts of interest.
- 486

487 Acknowledgements

- 488 This work was supported by US National Institutes of Health-National (NIH) Science
- 489 Foundation Ecology and Evolution of Infectious Disease program (R01 TW009237) and the
- 490 UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/J010367).
- 491 Additional support was provided by: BBSRC grants BB/L018845/1 (JAC and JEBH) and
- 492 BB/L018926/1 (SC, and JAC); Medical Research Council (MRC) grant MR/K500847/1
- 493 (GAFL); the Leverhulme Royal Society Africa Award AA130131 (JEBH); Wellcome Trust
- 494 096400/Z/11/Z (KJA); National Institute of Allergy & Infectious Diseases K23AI116869
- 495 (MPR), R01AI121378 (JAC) and Fogarty International Center Global Health Fellowship
- 496 R25TW009343 (MPR).
- 497
- 498

499	
500	References
501	
502	1. Crump JA. Typhoid Fever and the challenge of nonmalaria febrile illness in sub-
503	saharan Africa. Clin Infect Dis 2012; 54: 1107-9.
504	2. Feikin DR, Olack B, Bigogo GM, et al. The burden of common infectious disease
505	syndromes at the clinic and household level from population-based surveillance in rural and
506	urban Kenya. <i>PLoS One</i> 2011; 6 : e16085.
507	3. Institute for Health Metrics and Evaluation. Global Health Data Exchange. GBD
508	Results Tool. 2018. <u>http://ghdx.healthdata.org/gbd-results-tool</u> (Accessed 18 June 2018).
509	4. Prasad N, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in
510	low- and middle-income countries: A systematic review. <i>PLoS One</i> 2015; 10 : e0127962.
511	5. Crump JA, Ramadhani HO, Morrissey AB, et al. Invasive bacterial and fungal
512	infections among hospitalized HIV-infected and HIV-uninfected adults and adolescents in
513	northern Tanzania. Clin Infect Dis 2011; 52: 341-8.
514 515	6. Reyburn H, Mbatia R, Drakeley C, et al. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study 2004: 329 : 1212
516	7. Chandler CI. Chonya S. Boniface G. Juma K. Revburn H. Whitty CJ. The importance
517	of context in malaria diagnosis and treatment decisions - a quantitative analysis of observed
518	clinical encounters in Tanzania. Trop Med Int Health 2008; 13: 1131-42.
519	8. Amexo M, Tolhurst R, Barnish G, Bates I. Malaria misdiagnosis: effects on the poor
520	and vulnerable. <i>Lancet</i> 2004; 364 : 1896-8.
521	9. Murray CJ, Rosenfeld LC, Lim SS, et al. Global malaria mortality between 1980 and
522	2010: a systematic analysis. <i>Lancet</i> 2012; 379 : 413-31.
523	10. World Health Organization. World Malaria Report 2016. 2016.
524 525	<u>http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/</u> (Accessed 1 June 2018)
526	11 D'Acremont Vr Lengeler C Mshinda H Mtasiwa D Tanner M Genton B Time to
527	move from presumptive malaria treatment to laboratory-confirmed diagnosis and treatment in
528	African children with fever <i>PLoS Med</i> 2009: 6 : e252
529	12. Crump JA. Morrissev AB. Nicholson WL, et al. Etiology of severe non-malaria
530	febrile illness in Northern Tanzania: a prospective cohort study. <i>PLoS Negl Trop Dis</i> 2013: 7:
531	e2324.
532	13. Taylor LH, Latham SM, Woolhouse ME, Risk factors for human disease emergence.
533	Philos Trans R Soc Lond B Biol Sci 2001; 356 : 983-9.
534	14. Allan KJ, Biggs HM, Halliday JEB, et al. Epidemiology of leptospirosis in Africa: A
535	systematic review of a neglected zoonosis and a paradigm for 'One Health' in Africa. 2015; 9:
536	e0003899.
537	15. Vanderburg S, Rubach MP, Halliday JEB, Cleaveland S, Reddy EA, Crump JA.
538	Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review. PLoS
539	Negl Trop Dis 2014; 8: e2787.
540	16. Parola P, Paddock CD, Socolovschi C, et al. Update on tick-borne rickettsioses
541	around the world: a geographic approach. Clin Microbiol Rev 2013; 26: 657-702.
542	17. Costa F, Hagan JE, Calcagno J, et al. Global morbidity and mortality of leptospirosis:
543	A systematic review. PLoS Negl Trop Dis 2015; 9: e0003898.
544	18. Torgerson PR, Hagan JE, Costa F, et al. Global Burden of Leptospirosis: Estimated in
545	Terms of Disability Adjusted Life Years. PLoS Negl Trop Dis 2015; 9: e0004122.

- 546 19. Maina AN, Farris CM, Odhiambo A, et al. Q Fever, Scrub Typhus, and Rickettsial
 547 diseases in children, Kenya, 2011-2012. *Emerg Infect Dis* 2016; 22: 883-6.
- 54820.ILRI. Mapping of poverty and likely zoonoses hotspots. Zoonoses Project 4. Report to549DepartmentforInternationalDevelopment,UK.2012.
- 550 <u>http://www.dfid.gov.uk/r4d/pdf/outputs/livestock/ZooMapDFIDreport18June2012FINALsm.</u>
 551 pdf (Accessed 1 June 2018).
- 552 21. R Core Team. R: A Language and Environment for Statistical Computing. 2018.
 553 <u>http://www.R-project.org</u> (Accessed 01 October 2019).
- 554 22. WHO. Zoonoses. 2016. <u>http://www.who.int/zoonoses/diseases/en/</u> (Accessed 01 June 555 2016).
- 556 23. OIE. OIE-Listed diseases, infections and infestations in force in 2016. 2016.
 557 <u>http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2016/</u> (Accessed 01 Jun 558 2016).
- 559 24. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. 560 2007; **447**: 279-83.
- 561 25. World Health Organization. World Malaria Report 2005. 2005. 562 <u>http://www.who.int/malaria/publications/atoz/9241593199/en/</u> (Accessed 01 June 2018).
- 563 26. Centers for Disease Control and Prevention. Leptospirosis (Leptospira interrogans)
- 564 2013 Case Definition. 2013. <u>https://wwwn.cdc.gov/nndss/conditions/leptospirosis/case-</u> 565 <u>definition/2013/</u> (Accessed 12 June).
- 566 27. Centers for Disease Control and Prevention. Hantavirus Pulmonary Syndrome (HPS)
 567 Case Definition. 1996. <u>https://www.cdc.gov/hantavirus/health-care-workers/hps-case-</u>
 568 <u>definition.html</u> (Accessed 12 Jun).
- Sease Control and Prevention. Arboviral Diseases, Neroinvasive and
 Non-neuroinvasive 2015 Case definition. 2015. <u>https://wwwn.cdc.gov/nndss/conditions/west-</u>
 <u>nile-virus-disease/case-definition/2015/</u> (Accessed 12 June).
- 572 29. Centers for Disease Control and Prevention. Rabies, Human 2011 Case Definition.
 573 2011. <u>https://wwwn.cdc.gov/nndss/conditions/rabies-human/case-definition/2011/</u> (Accessed
 574 12 June).
- 575 30. Broadhurst MJ, Kelly JD, Miller A, et al. ReEBOV Antigen Rapid Test kit for point-576 of-care and laboratory-based testing for Ebola virus disease: a field validation study. *Lancet* 577 2015; **386**: 867-74.
- 578 31. Centers for Disease Control and Prevention. Viral Hemorrhagic Fever (VHF) 2011
- 579 Case Definition. 2011. <u>https://wwwn.cdc.gov/nndss/conditions/viral-hemorrhagic-fever/case-</u>
 580 <u>definition/2011/</u> (Accessed 12 June).
- 581 32. Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory
 582 diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant
 583 proteins. *Clin Vaccine Immunol* 2006; 13: 444-51.
- Bausch DG, Rollin PE, Demby AH, et al. Diagnosis and clinical virology of Lassa
 fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test,
 and virus isolation. *J Clin Microbiol* 2000; **38**: 2670-7.
- 587 34. Centers for Disease Control and Prevention. Rift Valley Fever (RVF). Diagnosis.
 588 2013. <u>https://www.cdc.gov/vhf/rvf/diagnosis/index.html</u> (Accessed 12 June).
- 589 35. Solomon T, Thao TT, Lewthwaite P, et al. A cohort study to assess the new WHO 590 Japanese encephalitis surveillance standards. *Bull World Health Organ* 2008; **86**: 178-86.
- 59136. WorldHealthOrganization.WHOregionaloffices.2018.592http://www.who.int/about/regions/en/ (Accessed 12 June 2018).2018.

593 37. Southeast Asia Infectious Disease Clinical Research Network. Causes and outcomes
594 of sepsis in southeast Asia: a multinational multicentre cross-sectional study. *Lancet Glob*595 *Health* 2017; 5: e157-e67.

596 38. D'Acremont V, Kilowoko M, Kyungu E, et al. Beyond malaria--causes of fever in outpatient Tanzanian children. *N Engl J Med* 2014; **370**: 809-17.

- 39. Wang TH, Wei KC, Jiang DD, Chiu CH, Chang SC, Wang JD. Unexplained deaths
 and critical illnesses of suspected infectious cause, Taiwan, 2000-2005. *Emerg Infect Dis*2008; 14: 1653-5.
- 40. Higgins JPT, Altman DG, JAC S (editors). Chapter 8: Assessing risk of bias in
 included studies. In: Higgins JPT, S G (editors), Cochrane Handbook for Systematic Reviews
 of Interventions, Version 5.2.0 (updated June 2017), Cochrane, 2017. <u>http://handbook-5-</u>
 1.cochrane.org (Accessed 1 October 2019).
- 41. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med* 2011; **155**: 529-36.
- 42. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for
 assessing the quality of nonrandomised studies in meta-analyses. 2019.
 http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (Accessed 01 October 2019).
- 610 43. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. 611 <u>https://ggplot2.tidyverse.org</u> (Accessed 01 October 2019).
- 612 44. Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic
 613 mammals: pathogen characteristics, host range and the risk of emergence. *Philos Trans R Soc*614 *Lond B Biol Sci* 2001; **356**: 991-9.
- 45. Rubach MP, Maro VP, Bartlett JA, Crump JA. Etiologies of illness among patients
 meeting integrated management of adolescent and adult illness district clinician manual
 criteria for severe infections in northern Tanzania: implications for empiric antimicrobial
 therapy. *Am J Trop Med Hyg* 2015; **92**: 454-62.
- 619 46. Keusch GT, Pappaioanou M, Gonzalez MC, Scott KA, Tsai P, editors. Sustaining
 620 Global Surveillance and Response to Emerging Zoonotic Diseases. Washington (DC); 2009.
- 621 47. Park SE, Pak GD, Aaby P, et al. The Relationship Between Invasive Nontyphoidal
- 622 *Salmonella* Disease, Other Bacterial Bloodstream Infections, and Malaria in Sub-Saharan 623 Africa. *Clin Infect Dis* 2016; **62 Suppl 1**: S23-31.
- 624

626 Figures627

- 628 Figure 1: Flow diagram of records and articles assessed for the review.
- 629 Among the 46 articles excluded because the full text was not accessible in English, the
- 630 breakdown of languages was as follows: French (13 articles); Spanish (11 articles); Turkish
- 631 (9 articles); Mandarin (6 articles); Portuguese (2 articles); Hebrew (2 articles); Arabic (1
- 632 article); Danish (1 article) and Russian (1 article).
- 633
- Figure 2: Map illustrating the malaria-endemic countries included in the study and number of articles contributing data for each country (indicated by colour shading).
- 636
- Figure 3: Barchart showing the number of articles that looked for, reported diagnosis of andcontributed data for each of 40, 31 and 30 zoonoses respectively.
- 639 These data were tabulated for all zoonoses (n=40) and articles included in the review
- 640 (n=244). Bar colour indicates pathogen type and shading differentiates studies that i)
- 641 contribute data meeting study diagnostic criteria (left hand bar sections with darkest shading,
- 642 n=30 pathogens indicated by *), ii) report diagnosis with approaches that do not meet study
- 643 diagnostic criteria (central bar sections with lighter shading, n=31 pathogens that comprised
- 644 the 30 with extracted data and *Escherichia coli*), iii) report looking for but not diagnosing a
- 645 zoonosis (right hand bar section with lightest shading, n=40 pathogens, also including
- 646 Burkholderia spp. Tick borne encephalitis virus, Marburg virus, Rabies virus, Newcastle
- 647 Disease virus, Mycobacterium bovis, Francisella tularensis, Ebola virus and
- 648 *Cryptosporidium parvum*).649
- 650 Figure 4: Proportion of fevers attributed to each zoonosis.
- 651 The plot includes one data point per study and pathogen combination. The different panels
- 652 include data from different WHO regions. Point colour indicates the coding for the risk of
- bias for the representativeness of the febrile population and point size is proportional to the
- number of individuals tested. Points are jittered on the x axis and shaded to visualize
- 655 overlapping points.
- 656
- Figure 5: Venn diagram illustrating the associations between febrile population clinical presentation and pathogens identified
- 658 presentation and pathogens identified.
- 659 Circles are scaled to the number of pathogens detected in each type of febrile population.
- 660 Undifferentiated, shown in green, 23 pathogens (including pathogens also seen in other 661 populations): fabrila nourological, shown in red, four archagenes, fabrila gasterintering
- 661 populations); febrile neurological, shown in red, four pathogens; febrile gastrointestinal, 662 shown in blue, two pathogens; febrile respiratory, shown in purple, one pathogen, febrile
- haemorrhagic, shown in yellow, seven pathogens. Five pathogens are not represented in the
- 664 figure as they were only detected in febrile populations classified as co-morbid (*Listeria spp.*,
- 665 *Pasteurella* spp. and *Toxoplasma gondii*) or in febrile populations with a specific febrile
- 666 aetiology suspected (Leishmania donavani, and Yersinia pestis).
- 667 668

-

1.

1.1

Figure 3 Leptospira spp.* -Salmonella (non-Typhi)* -Rickettsia (TGR)* -Rickettsia (SFGR)* -Orientia tsutsugamushi* Coxiella burnetii* Brucella spp.* Japanese encephalitis virus* Hantavirus* West Nile virus* Borrelia spp.* Streptococcus spp.* Escherichia spp. Rickettsia spp.* Crimean-Congo haemorrhagic fever virus* -Bartonella spp.* -Rift valley fever virus* -Lassa virus* Leishmania donovani* Anaplasma phagocytophilum* -Venezuelan equine encephalitis virus* *Ehrlichia* spp.* *Campylobacter* spp.* Burkholderia spp. Tick borne encephalitis virus -Schistosoma mansoni* Pasteurella spp.* Marburg virus -Babesia microti* Yersinia pestis* -Toxoplasma gondii* Rabies virus Nipah virus* Newcastle disease virus Mycobacterium bovis -Listeria spp.* Francisella tularensis -Ebola virus Eastern equine encephalitis virus* -Cryptosporidium parvum

Pathogen

2

Zoonotic causes of febrile illness in malaria endemic countries: a systematic review **Supplementary Information**

Zoonoses Search Concept Construction

To construct a list of frequently reported zoonotic causes of human fever, we conducted preliminary searches of Medline and Embase using the search syntax '(exp Fever/ OR fever.mp.) AND (exp Zoonoses/ OR zoonoses.mp OR zoonosis.mp)' limited to humans.

3456789 The outputs of these searches were combined and de-duplicated in R.¹ The complete list of all subject headings associated with these articles was extracted and each heading was classified by two independent reviewers to 10 identify headings for named disease causing agents or named diseases. Headings that referred to non-specific 11 pathogen groups e.g., 'arboviruses' and those that referred to non-specific clinical symptoms, signs, syndromes, 12 13 or diseases e.g., 'jaundice' and 'parasitic diseases' were excluded. All headings classified as either a pathogen or disease by one or both reviewers (JEBH and PH) were matched to a list of 1,415 infectious organisms known to 14 be pathogenic to humans². Non-zoonotic pathogens or diseases based on the classification by Taylor et al.² were 15 excluded. The frequency of appearance of each zoonosis-related heading in the initial search output dataset was 16 tabulated. Pathogen/disease subject headings that appeared in >10 references identified through the initial 'Fever 17 and Zoonoses' searches were retained. 18

19 For the 'zoonoses' concept, the list of zoonotic pathogens identified above was combined with lists of zoonotic 20 diseases from the World Health Organization (WHO)³ and World Organisation of Animal Health (OIE)⁴.

21 22 23 24 25 All identified pathogens or diseases were then classified to differentiate pathogens that are normatively acquired by people through direct or indirect transmission from vertebrate animals to humans, as compared to pathogens where zoonotic transmission has been recorded but where sustained transmission within human populations also occurs and the majority of human infections are not acquired through zoonotic transmission. This classification 26 was made following the definitions used in Wolfe et al.⁵ Three reviewers (JAC, SC, and MPR) independently 27 classified listed pathogens or diseases using the stages in the transformation of an animal pathogen into a 28 specialized pathogen of humans described in Wolfe et al.:5

- 29 Stage 1. A microbe that is present in animals but that has not been detected in humans under natural 30 conditions (that is, excluding modern technologies that can inadvertently transfer microbes, such as blood 31 transfusion, organ transplants, or hypodermic needles).
- 32 Stage 2. A pathogen of animals that, under natural conditions, has been transmitted from animals to humans 33 ('primary infection') but has not been transmitted between humans ('secondary infection'). 34
 - Stage 3. Animal pathogens that can undergo only a few cycles of secondary transmission between humans, so that occasional human outbreaks triggered by a primary infection soon die out.
- 36 Stage 4. A disease that exists in animals, and that has a natural (sylvatic) cycle of infecting humans by 37 primary transmission from the animal host, but that also undergoes long sequences of secondary 38 transmission between humans without the involvement of animal hosts.
- 39 Stage 5. A pathogen exclusive to humans.⁵

40

47

48

49

35

41 Tie-breaks were resolved by a fourth independent reviewer (JEBH). Pathogens classified as stages 1 to 3 were 42 retained. Pathogens classified as stage 4 or 5, where sustained chains of transmission between humans occur, 43 were excluded from the review. 44

45 Pathogens or diseases included in the list of study zoonoses therefore included all pathogens and diseases that 46 were:

- Identified through the WHO list, OIE list or preliminary zoonoses search approach AND •
- Classified as a zoonoses² AND .
- Classified as a stage 1, 2 or 3 zoonosis.⁵ •

50 51 52 The search concept for each pathogen or disease included exploded subject headings for both the pathogen and the diseases caused in humans and terms for both pathogen and disease were also included as keywords (e.g., 53 54 exp anthrax/ OR anthrax.mp. OR exp Bacillus anthracis/ OR bacillus anthracis.mp.). In instances where pathogen species within the same genus varied in their zoonotic status, search concepts were constructed to 55 include all zoonotic and non-zoonotic species and articles relating to non-zoonotic species were excluded at a 56 later stage. Finally, the list of pathogen- or disease-specific searches were combined using OR syntax to generate

57 the full 'zoonoses' search concept (Medline Search Syntax and Embase Search Syntax sections below).

58 59 **Medline Search Syntax**

- 60
- 61 (exp Anaplasmosis/ OR anaplasmosis.mp. OR exp Anaplasma/ OR anaplasma.mp.) [set database shortcode to
- 62 'pmez']
- 63 (exp Babesiosis/ OR babesiosis.mp. OR exp Babesia/ OR babesia.mp.)
- 64 (exp Anthrax/ OR anthrax.mp. OR exp Bacillus anthracis/ OR bacillus anthracis.mp.)
- 65 (exp Bartonella Infections/ OR bartonellosis.mp. OR exp Bartonella/ OR bartonella.mp.)
- 66 (exp Borrelia Infections/ OR borrelia Infection\$1.mp. OR exp Borrelia/ OR borrelia.mp.)
- 67 (exp brucellosis/ OR brucellosis.mp. OR exp Brucella/ OR brucella.mp.)
- 68 (exp Burkholderia Infections/ OR glanders.mp. OR exp Burkholderia/ OR burkholderia.mp.)
- 69 (exp Campylobacter Infections/ OR exp Campylobacter/ OR campylobacter\$.mp.)
- 70 (exp Psittacosis/ OR psittacosis.mp. OR exp Chlamydophila psittaci/ OR chlamydophila psittaci.mp.)
- 71 (exp Cowpox/ OR exp Cowpox virus/ OR cowpox.mp.)
- 72 (exp Q Fever/ OR q fever.mp. OR exp Coxiella/ OR coxiella.mp.)
- 73 (exp Hemorrhagic Fever, Crimean/OR crimean-congo h?emorrhagic fever.mp. OR exp Hemorrhagic Fever
- 74 Virus, Crimean-Congo/ OR crimean-congo h?emorrhagic fever virus.mp.)
- (exp Hemorrhagic Fever, Ebola/ OR ebolavirus infection\$1.mp. OR exp Ebolavirus/ OR ebola\$.mp.)
- (exp Echinococcosis/ OR echinococcosis.mp. OR exp Echinococcus/ OR echinococcus.mp.)
- 75 76 77 (exp Ehrlichiosis/ OR ehrlichiosis.mp. OR exp Ehrlichia/ OR ehrlichia.mp.)
- 78 79 (exp Encephalomyelitis, Equine/ OR exp Encephalitis Virus, Eastern Equine/ OR exp Encephalitis Virus,
- Venezuelan Equine/ OR exp Encephalitis Virus, Western Equine/ OR equine encephalitis.mp. OR equine 80 encephalomyelitis.mp.)
- 81 (exp Escherichia coli Infections/ OR exp Escherichia coli/ OR escherichia coli.mp.)
- 82 (exp "Foot-and-Mouth Disease"/ OR exp "Foot-and-Mouth Disease Virus"/ OR "foot and mouth disease".mp.
- 83 OR "foot-and-mouth".mp.)
- 84 (exp Tularemia/ OR tular?emia.mp. OR exp Francisella tularensis/ OR francisella tularensis.mp.)
- 85 (exp Hantavirus Infections/ OR hantavirus infection\$1.mp. OR exp Hantavirus/ OR hantavirus.mp.)
- 86 (exp Henipavirus Infections/ OR exp Henipavirus/ OR hendra.mp. OR nipah.mp. OR henipavirus.mp.)
- 87 (exp Encephalitis, Japanese/ OR exp Encephalitis Virus, Japanese/ OR japanese encephalitis.mp.)
- 88 (exp Lassa Fever/ OR exp Lassa virus/ OR lassa.mp.)
- 89 (exp Leishmaniasis/ OR leishmaniasis.mp. OR exp Leishmania/ OR leishmania.mp.)
- 90 (exp Leptospirosis/ OR leptospirosis.mp. OR exp Leptospira/ OR leptospira.mp.)
- 91 (exp Listeriosis/ OR listeriosis.mp. OR exp Listeria/ OR listeria.mp.)
- 92 (exp Marburg Virus Disease/ OR marburg h?emorrhagic fever.mp. OR exp Marburgvirus/ OR marburg\$.mp.)
- 93 (exp Monkeypox/ OR exp Monkeypox virus/ OR monkeypox.mp.)
- 94 (exp Tuberculosis, Bovine/ OR bovine tuberculosis.mp. OR exp Mycobacterium bovis/ OR mycobacterium
- 95 bovis.mp.)
- 96 (exp Paratuberculosis/ OR paratuberculosis.mp. OR exp "Mycobacterium avium subsp. paratuberculosis"/ OR
- 97 mycobacterium paratuberculosis.mp.)
- 98 (exp Newcastle Disease/ OR exp Newcastle disease virus/ OR newcastle disease.mp.)
- 99 (exp Pasteurella Infections/ OR pasteurellosis.mp. OR exp Pasteurella/ OR pasteurella.mp.)
- 100 (exp Prion Diseases/ OR exp Prions/ OR prion.mp.)
- 101 (exp Rabies/ OR rabies.mp. OR exp Rabies virus/ OR rabies virus.mp.)
- 102 (exp Rat-Bite Fever/ OR rat-bite.mp. OR rat bite.mp. OR exp Streptobacillus/ OR exp Spirillum/ OR
- 103 streptobacillus.mp. OR spirillum.mp.)
- 104 (exp Rickettsiaceae Infections/ OR rickettsiaceae infection\$1.mp. OR rickettsiosis.mp. OR exp Rickettsieae/ OR 105 rickettsia.mp.)
- 106 (exp Rift Valley Fever/ OR rift valley fever.mp. OR exp Rift Valley fever virus/ OR rift valley fever virus.mp.)
- 107 (exp Salmonella Infections/ OR salmonellosis.mp. OR exp Salmonella/ OR salmonella.mp.)
- 108 (exp Schistosomiasis/ OR schistosomiasis.mp. OR exp Schistosoma/ OR schistosoma.mp.)
- 109 (exp Streptococcal Infections/ OR streptococcal.mp. OR exp Streptococcus/ OR streptococcus.mp.)
- 110 (exp Pseudorabies/ OR pseudorabies.mp. OR exp Herpesvirus 1, Suid/ OR suid herpesvirus.mp. OR
- 111 aujeszky\$.mp.)
- 112 (exp Swine Vesicular Disease/ OR swine vesicular.mp. OR exp Enterovirus/ OR enterovirus.mp.)
- 113 (exp Cysticercosis/ OR cysticercosis.mp. OR exp Taenia/ OR taenia.mp.)
- 114 (exp Encephalitis, Tick-Borne/ OR tick borne encephalitis.mp. OR exp Encephalitis Viruses, Tick-Borne/ OR
- 115 tick borne encephalitis virus.mp.)
- 116 (exp Toxocariasis/ OR toxocariasis.mp. OR exp Toxocara/ OR toxocara.mp.)
- 117 (exp Toxoplasmosis/ OR toxoplasmosis.mp. OR exp Toxoplasma/ OR toxoplasma.mp.)

- 118 (exp Trichinellosis/ OR trichinellosis.mp. OR exp Trichinella/ OR trichinella.mp.)
- 119 (exp Trypanosomiasis/ OR trypanosomiasis.mp. OR exp Trypanosoma/ OR trypanosoma.mp.)
- 120 (exp Vaccinia/ OR exp Vaccinia virus/ OR vaccinia.mp.)
- 121 (exp Vesicular Stomatitis/ OR exp Vesiculovirus/ OR vesicular stomatitis.mp.)
- 122 (exp West Nile Fever/ OR west nile fever.mp. OR exp West Nile virus/ OR west nile virus.mp.)
- 123 (exp Yersinia Infections/ OR yersinia infection\$1.mp. OR exp Yersinia/ OR yersinia.mp. OR plague.mp.)
- 124 (exp "Georgia (Republic)"/ OR "Georgia (Republic)".mp.)
- 125 (exp Afghanistan/ OR Afghanistan.mp.)
- 126 (exp Algeria/ OR Algeria.mp.)
- 127 (exp Angola/ OR Angola.mp.)
- 128 (exp Argentina/ OR Argentina.mp.)
- 129 (exp Armenia/ OR Armenia.mp.)
- 130 (exp Azerbaijan/ OR Azerbaijan.mp.)
- 131 (exp Bahamas/ OR Bahamas.mp.)
- 132 (exp Bangladesh/ OR Bangladesh.mp.)
- 133 (exp Belize/ OR Belize.mp.)
- 134 (exp Benin/ OR Benin.mp.)
- 135 (exp Bhutan/ OR Bhutan.mp.)
- 136 (exp Bolivia/ OR Bolivia.mp.)
- 137 (exp Botswana/ OR Botswana.mp.)
- 138 (exp Brazil/ OR Brazil.mp.)
- 139 (exp Burkina Faso/ OR Burkina Faso.mp.)
- 140 (exp Burundi/ OR Burundi.mp.)
- 141 (exp Cambodia/ OR Cambodia.mp.)
- 142 (exp Cameroon/ OR Cameroon.mp.)
- 143 (exp Cape Verde/ OR Cape Verde.mp.)
- 144 (exp Central African Republic/ OR Central African Republic.mp.)
- 145 (exp Chad/ OR Chad.mp.)
- 146 (exp China/ OR China.mp.)
- 147 (exp Colombia/ OR Colombia.mp.)
- 148 (exp Comoros/ OR Comoros.mp.)
- 149 (exp Congo/ OR Congo.mp.)
- 150 (exp Costa Rica/ OR Costa Rica.mp.)
- 151 (exp Cote d'Ivoire/ OR Cote d'Ivoire.mp.)
- 152 (exp Democratic People's Republic of Korea/ OR Democratic People's Republic of Korea.mp.)
- 153 (exp Democratic Republic of the Congo/ OR Democratic Republic of the Congo.mp.)
- 154 (exp Djibouti/ OR Djibouti.mp.)
- 155 (exp Dominican Republic/ OR Dominican Republic.mp.)
- 156 (exp East Timor/ OR East Timor.mp.)
- 157 (exp Ecuador/ OR Ecuador.mp.)
- 158 (exp Egypt/ OR Egypt.mp.)
- 159 (exp El Salvador/ OR El Salvador.mp.)
- 160 (exp Equatorial Guinea/ OR Equatorial Guinea.mp.)
- 161 (exp Eritrea/ OR Eritrea.mp.)
- 162 (exp Ethiopia/ OR Ethiopia.mp.)
- 163 (exp French Guiana/ OR French Guiana.mp.)
- 164 (exp Gabon/ OR Gabon.mp.)
- 165 (exp Gambia/ OR Gambia.mp.)
- 166 (exp Ghana/ OR Ghana.mp.)
- 167 (exp Guatemala/ OR Guatemala.mp.)
- 168 (exp Guinea/ OR Guinea.mp.)
- 169 (exp Guinea-Bissau/ OR Guinea-Bissau.mp.)
- 170 (exp Guyana/ OR Guyana.mp.)
- 171 (exp Haiti/ OR Haiti.mp.)
- 172 (exp Honduras/ OR Honduras.mp.)
- 173 (exp India/ OR India.mp.)
- 174 (exp Indonesia/ OR Indonesia.mp.)
- 175 (exp Iran/ OR Iran.mp.)
- 176 (exp Iraq/ OR Iraq.mp.)
- 177 (exp Jamaica/ OR Jamaica.mp.)

178 (exp Kenya/ OR Kenya.mp.) 179 (exp Kyrgyzstan/ OR Kyrgyzstan.mp.) 180 (exp Laos/ OR Laos.mp.) 181 (exp Liberia/ OR Liberia.mp.) 182 (exp Madagascar/ OR Madagascar.mp.) 183 (exp Malawi/ OR Malawi.mp.) 184 (exp Malaysia/ OR Malaysia.mp.) 185 (exp Mali/ OR Mali.mp.) 186 (exp Mauritania/ OR Mauritania.mp.) 187 (exp Mauritius/ OR Mauritius.mp.) 188 (exp Mexico/ OR Mexico.mp.) 189 (exp Morocco/ OR Morocco.mp.) 190 (exp Mozambique/ OR Mozambique.mp.) 191 (exp Myanmar/ OR Myanmar.mp.) 192 (exp Namibia/ OR Namibia.mp.) 193 (exp Nepal/ OR Nepal.mp.) 194 (exp Nicaragua/ OR Nicaragua.mp.) 195 (exp Niger/ OR Niger.mp.) 196 (exp Nigeria/ OR Nigeria.mp.) 197 (exp Oman/ OR Oman.mp.) 198 (exp Pakistan/ OR Pakistan.mp.) 199 (exp Panama/ OR Panama.mp.) 200 (exp Papua New Guinea/ OR Papua New Guinea.mp.) 201 (exp Paraguay/ OR Paraguay.mp.) 202 (exp Peru/ OR Peru.mp.) 203 (exp Philippines/ OR Philippines.mp.) 204 (exp Republic of Korea/ OR Republic of Korea.mp.) 205 (exp Russia/ OR Russia.mp.) 206 (exp Rwanda/ OR Rwanda.mp.) 207 (exp Sao Tome/ OR Sao Tome.mp.) 208 (exp Saudi Arabia/ OR Saudi Arabia.mp.) 209 (exp Senegal/ OR Senegal.mp.) 210 (exp Sierra Leone/ OR Sierra Leone.mp.) 211 (exp Solomon Islands/ OR Solomon Islands.mp.) 212 (exp Somalia/ OR Somalia.mp.) 213 (exp South Africa/ OR South Africa.mp.) 214 (exp Sri Lanka/ OR Sri Lanka.mp.) 215 (exp Sudan/ OR Sudan.mp.) 216 (exp Suriname/ OR Suriname.mp.) 217 (exp Swaziland/ OR Swaziland.mp.) 218 (exp Syria/ OR Syria.mp.) 219 (exp Tajikistan/ OR Tajikistan.mp.) 220 (exp Tanzania/ OR Tanzania.mp.) 221 (exp Thailand/ OR Thailand.mp.) 222 (exp Togo/ OR Togo.mp.) 223 (exp Turkey/ OR Turkey.mp.) 224 (exp Turkmenistan/ OR Turkmenistan.mp.) 225 (exp Uganda/ OR Uganda.mp.) 226 (exp Uzbekistan/ OR Uzbekistan.mp.) 227 (exp Vanuatu/ OR Vanuatu.mp.) 228 (exp Venezuela/ OR Venezuela.mp.) 229 (exp Vietnam/ OR Vietnam.mp.) 230 (exp Yemen/ OR Yemen.mp.) 231 (exp Zambia/ OR Zambia.mp.) 232 (exp Zimbabwe/ OR Zimbabwe.mp.) 233 (exp Africa/ OR africa.mp) 234 (exp Fever/ OR fever\$1.mp. OR febrile.mp.) 235 or/1-52 236 or/53-162 237 164 AND 165

- 238 239 240 241 163 AND 166
- ..l/167 yr=2004-2019

243 Embase Search Syntax

244

242

- 245 (exp anaplasmosis/ OR exp human granulocytic anaplasmosis/ OR anaplasmosis.mp. OR exp Anaplasma/ OR
- anaplasma.mp.) [set database shortcode to 'emczd']
- 247 (exp babesiosis/ OR babesiosis.mp. OR exp Babesia/ OR babesia.mp.)
- 248 (exp anthrax/ OR anthrax.mp. OR exp Bacillus anthracis/ OR bacillus anthracis.mp.)
- 249 (exp bartonellosis/ OR bartonellosis.mp. OR exp Bartonella/ OR bartonella.mp.)
- 250 (exp Borrelia infection/ OR borrelia Infection\$1.mp. OR exp Borrelia/ OR borrelia.mp.)
- 251 (exp brucellosis/ OR brucellosis.mp. OR exp Brucella/ OR brucella.mp.)
- 252 (exp Burkholderia infection/ OR glanders.mp. OR exp Burkholderia/ OR burkholderia.mp.)
- 253 (exp campylobacteriosis/ OR exp Campylobacter/ OR campylobacter\$.mp.)
- 254 (exp ornithosis/ OR psittacosis.mp. OR exp Chlamydophila psittaci/ OR chlamydophila psittaci.mp.)
- 255 (exp cowpox/ OR exp Cowpox virus/ OR cowpox.mp.)
- 256 (exp Q fever/ OR q fever.mp. OR exp Coxiella/ OR coxiella.mp.)
- 257 (exp Crimean Congo hemorrhagic fever/ OR crimean-congo h?emorrhagic fever.mp. OR exp Nairo virus/ OR
- crimean-congo h?emorrhagic fever virus.mp.)
- 259 (exp Ebola hemorrhagic fever/ OR ebolavirus infection\$1.mp. OR exp Ebola virus/ OR ebola\$.mp.)
- 260 (exp echinococcosis/ OR echinococcosis.mp. OR exp Echinococcus/ OR echinococcus.mp.)
- 261 (exp ehrlichiosis/ OR ehrlichiosis.mp. OR exp Ehrlichia/ OR ehrlichia.mp.)
- 262 (exp Eastern equine encephalitis/ OR exp Venezuelan equine encephalitis/ OR exp Western equine encephalitis/
- 263 OR exp Eastern equine encephalomyelitis virus/ OR exp Venezuelan equine encephalomyelitis alphavirus/ OR
- 264 exp Western equine encephalomyelitis alphavirus/ OR equine encephalitis.mp. OR equine
- 265 encephalomyelitis.mp.)
- 266 (exp Escherichia coli infection/ OR exp Escherichia coli/ OR escherichia coli.mp.)
- (exp "foot and mouth disease"/ OR exp "Foot and mouth disease virus"/ OR "foot and mouth disease".mp. OR
 "foot-and-mouth".mp.)
- 269 (exp tularemia/ OR tular?emia.mp. OR exp Francisella tularensis/ OR francisella tularensis.mp.)
- 270 (exp Hantavirus infection/ OR hantavirus infection\$1.mp. OR exp Hantavirus/ OR hantavirus.mp.)
- 271 (exp Nipah virus infection/ OR exp Hendra virus infection/ OR exp Nipah virus/ OR exp Hendra virus/ OR
- 272 hendra.mp. OR nipah.mp. OR henipavirus.mp.)
- 273 (exp Japanese encephalitis/ OR exp Japanese encephalitis virus/ OR japanese encephalitis.mp.)
- 274 (exp Lassa fever/ OR exp Lassa virus/ OR lassa.mp)
- 275 (exp leishmaniasis/ OR leishmaniasis.mp. OR exp Leishmania/ OR leishmania.mp.)
- 276 (exp leptospirosis/ OR leptospirosis.mp. OR exp Leptospira/ OR leptospira.mp.)
- 277 (exp listeriosis/ OR listeriosis.mp. OR exp Listeria/ OR listeria.mp.)
- 278 (exp Marburg hemorrhagic fever/ OR marburg h?emorrhagic fever.mp. OR exp Marburg virus/ OR
- 279 marburg\$.mp.)
- 280 (exp monkeypox/ OR exp Monkeypox virus/ OR monkeypox.mp.)
- 281 (exp bovine tuberculosis/ OR bovine tuberculosis.mp. OR exp Mycobacterium bovis/ OR mycobacterium
- 282 bovis.mp.)
- (exp paratuberculosis/ OR paratuberculosis.mp. OR exp Mycobacterium paratuberculosis/ OR mycobacterium
 paratuberculosis.mp.)
- 285 (exp Newcastle disease/ OR exp Newcastle disease paramyxovirus/ OR newcastle disease.mp.)
- 286 (exp pasteurellosis/ OR pasteurellosis.mp. OR exp Pasteurella/ OR pasteurella.mp.)
- 287 (exp prion disease/ OR exp prion/ OR prion.mp.)
- 288 (exp rabies/ OR rabies.mp. OR exp Rabies virus/ OR rabies virus.mp.)
- 289 (exp rat bite fever/ OR rat-bite.mp. OR rat bite.mp. OR exp Streptobacillus/ OR exp Spirillum/ OR
- 290 streptobacillus.mp. OR spirillum.mp.)
- (exp Rickettsiaceae infection/ OR rickettsiaceae infection\$1.mp.OR rickettsiosis.mp. OR exp Rickettsiaceae/ OR
 rickettsia.mp.)
- (exp Rift Valley fever/ OR rift valley fever.mp. OR exp Rift Valley fever bunyavirus/ OR rift valley fever
 virus.mp.)
- 295 (exp salmonellosis/ OR exp animal salmonellosis/ OR salmonellosis.mp. OR exp Salmonella/ OR
- 296 salmonella.mp.)
- 297 (exp schistosomiasis/ OR schistosomiasis.mp. OR exp Schistosoma/ OR schistosoma.mp.)
- 298 (exp Streptococcus infection/ OR streptococcal.mp. OR exp Streptococcus/ OR streptococcus.mp.)
- 299 (exp pseudorabies/ OR pseudorabies.mp. OR exp Pseudorabies herpetovirus/ OR suid herpesvirus.mp. OR
- 300 aujeszky\$.mp.)
- 301 (exp swine vesicular disease/ OR swine vesicular.mp. OR exp Enterovirus/ OR enterovirus.mp.)

- 302 (exp cysticercosis/ OR cysticercosis.mp. OR exp Taenia/ OR taenia.mp.)
- 303 (exp tick borne encephalitis/ OR tick borne encephalitis.mp. OR exp Tick borne encephalitis flavivirus/ OR tick
- 304 borne encephalitis virus.mp.)
- 305 (exp toxocariasis/ OR toxocariasis.mp. OR exp Toxocara/ OR toxocara.mp.)
- 306 (exp toxoplasmosis/ OR exp congenital toxoplasmosis/ OR toxoplasmosis.mp. OR exp Toxoplasma/ OR
- 307 toxoplasma.mp.)
- 308 (exp trichinosis/ OR trichinellosis.mp. OR exp Trichinella/ OR trichinella.mp.)
- 309 (exp trypanosomiasis/ OR trypanosomiasis.mp. OR exp Trypanosoma/ OR trypanosoma.mp.)
- 310 (exp vaccinia/ OR exp Vaccinia virus/ OR vaccinia.mp.)
- 311 (exp vesicular stomatitis/ OR exp Vesicular stomatitis virus/ OR vesicular stomatitis.mp.)
- 312 (exp West Nile fever/ OR west nile fever.mp. OR exp West Nile flavivirus/ OR west nile virus.mp.)
- 313 (exp Yersinia infection/ OR yersinia infection\$1.mp. OR exp Yersinia/ OR yersinia.mp. OR plague.mp.)
- 314 (exp "Georgia (republic)"/ OR "Georgia (republic)".mp.)
- 315 (exp "Turkey (republic)"/ OR "Turkey (republic)".mp.)
- 316 (exp Afghanistan/ OR Afghanistan.mp.)
- 317 (exp Algeria/ OR Algeria.mp.)
- 318 (exp Angola/ OR Angola.mp.)
- 319 (exp Argentina/ OR Argentina.mp.)
- 320 (exp Armenia/ OR Armenia.mp.)
- 321 (exp Azerbaijan/ OR Azerbaijan.mp.)
- 322 (exp Bahamas/ OR Bahamas.mp.)
- 323 (exp Bangladesh/ OR Bangladesh.mp.)
- 324 (exp Belize/ OR Belize.mp.)
- 325 (exp Benin/ OR Benin.mp.)
- 326 (exp Bhutan/ OR Bhutan.mp.)
- 327 (exp Bolivia/ OR Bolivia.mp.)
- 328 (exp Botswana/ OR Botswana.mp.)
- 329 (exp Brazil/ OR Brazil.mp.)
- 330 (exp Burkina Faso/ OR Burkina Faso.mp.)
- 331 (exp Burundi/ OR Burundi.mp.)
- 332 (exp Cambodia/ OR Cambodia.mp.)
- 333 (exp Cameroon/ OR Cameroon.mp.)
- 334 (exp Cape Verde/ OR Cape Verde.mp.)
- 335 (exp Central African Republic/ OR Central African Republic.mp.)
- 336 (exp Chad/ OR Chad.mp.)
- 337 (exp China/ OR China.mp.)
- 338 (exp Colombia/ OR Colombia.mp.)
- 339 (exp Comoros/ OR Comoros.mp.)
- 340 (exp Congo/ OR Congo.mp.)
- 341 (exp Costa Rica/ OR Costa Rica.mp.)
- 342 (exp Cote d'Ivoire/ OR Cote d'Ivoire.mp.)
- 343 (exp Democratic Republic Congo/ OR Democratic Republic Congo.mp.)
- 344 (exp Djibouti/ OR Djibouti.mp.)
- 345 (exp Dominican Republic/ OR Dominican Republic.mp.)
- 346 (exp Ecuador/ OR Ecuador.mp.)
- 347 (exp Egypt/ OR Egypt.mp.)
- 348 (exp El Salvador/ OR El Salvador.mp.)
- 349 (exp Equatorial Guinea/ OR Equatorial Guinea.mp.)
- 350 (exp Eritrea/ OR Eritrea.mp.)
- 351 (exp Ethiopia/ OR Ethiopia.mp.)
- 352 (exp French Guiana/ OR French Guiana.mp.)
- 353 (exp Gabon/ OR Gabon.mp.)
- 354 (exp Gambia/ OR Gambia.mp.)
- 355 (exp Ghana/ OR Ghana.mp.)
- 356 (exp Guatemala/ OR Guatemala.mp.)
- 357 (exp Guinea/ OR Guinea.mp.)
- 358 (exp Guinea-Bissau/ OR Guinea-Bissau.mp.)
- 359 (exp Guyana/ OR Guyana.mp.)
- 360 (exp Haiti/ OR Haiti.mp.)
- 361 (exp Honduras/ OR Honduras.mp.)

362 (exp India/ OR India.mp.) 363 (exp Indonesia/ OR Indonesia.mp.) 364 (exp Iran/ OR Iran.mp.) 365 (exp Iraq/ OR Iraq.mp.) 366 (exp Jamaica/ OR Jamaica.mp.) 367 (exp Kenya/ OR Kenya.mp.) 368 (exp Kyrgyzstan/ OR Kyrgyzstan.mp.) 369 (exp Laos/ OR Laos.mp.) 370 (exp Liberia/ OR Liberia.mp.) 371 (exp Madagascar/ OR Madagascar.mp.) 372 (exp Malawi/ OR Malawi.mp.) 373 (exp Malaysia/ OR Malaysia.mp.) 374 (exp Mali/ OR Mali.mp.) 375 (exp Mauritania/ OR Mauritania.mp.) 376 (exp Mauritius/ OR Mauritius.mp.) 377 (exp Mexico/ OR Mexico.mp.) 378 (exp Morocco/ OR Morocco.mp.) 379 (exp Mozambique/ OR Mozambique.mp.) 380 (exp Myanmar/ OR Myanmar.mp.) 381 (exp Namibia/ OR Namibia.mp.) 382 (exp Nepal/ OR Nepal.mp.) 383 (exp Nicaragua/ OR Nicaragua.mp.) 384 (exp Niger/ OR Niger.mp.) 385 (exp Nigeria/ OR Nigeria.mp.) 386 (exp North Korea/ OR North Korea.mp.) 387 (exp Oman/ OR Oman.mp.) 388 (exp Pakistan/ OR Pakistan.mp.) 389 (exp Panama/ OR Panama.mp.) 390 (exp Papua New Guinea/ OR Papua New Guinea.mp.) 391 (exp Paraguay/ OR Paraguay.mp.) 392 (exp Peru/ OR Peru.mp.) 393 (exp Philippines/ OR Philippines.mp.) 394 (exp Russian Federation/ OR Russian Federation.mp.) 395 (exp Rwanda/ OR Rwanda.mp.) 396 (exp Sao Tome and Principe/ OR Sao Tome and Principe.mp.) 397 (exp Saudi Arabia/ OR Saudi Arabia.mp.) 398 (exp Senegal/ OR Senegal.mp.) 399 (exp Sierra Leone/ OR Sierra Leone.mp.) 400 (exp Solomon Islands/ OR Solomon Islands.mp.) 401 (exp Somalia/ OR Somalia.mp.) 402 (exp South Africa/ OR South Africa.mp.) 403 (exp South Korea/ OR South Korea.mp.) 404 (exp Sri Lanka/ OR Sri Lanka.mp.) 405 (exp Sudan/ OR Sudan.mp.) 406 (exp Suriname/ OR Suriname.mp.) 407 (exp Swaziland/ OR Swaziland.mp.) 408 (exp Syrian Arab Republic/ OR Syrian Arab Republic.mp.) 409 (exp Tajikistan/ OR Tajikistan.mp.) 410 (exp Tanzania/ OR Tanzania.mp.) 411 (exp Thailand/ OR Thailand.mp.) 412 (exp Timor-Leste/ OR Timor-Leste.mp.) 413 (exp Togo/ OR Togo.mp.) 414 (exp Turkmenistan/ OR Turkmenistan.mp.) 415 (exp Uganda/ OR Uganda.mp.) 416 (exp Uzbekistan/ OR Uzbekistan.mp.) 417 (exp Vanuatu/ OR Vanuatu.mp.) 418 (exp Venezuela/ OR Venezuela.mp.) 419 (exp Viet Nam/ OR Viet Nam.mp.) 420 (exp Yemen/ OR Yemen.mp.) 421 (exp Zambia/ OR Zambia.mp.)

- 422 (exp Zimbabwe/ OR Zimbabwe.mp.)
- 423 (exp Africa/ OR africa.mp)
- 424 (exp fever/ OR fever\$1.mp. OR febrile.mp.)
- 425 or/1-52
- 426 or/53-162
- 427 164 AND 165
- 428 163 AND 166
- 429 ..1/167 yr=2004-2019
- 422 423 424 425 426 427 428 429 430
- 431

432 433 434 435 **Abstract Screening**

Conference proceedings, records that did not include any abstract text, and records that did not have an abstract

in English were excluded. Remaining records were evaluated against the criteria listed in table S1. Records that

436 437 did not present data from a malaria-endemic country were also excluded. Full text articles were sought for all articles not excluded at the abstract review step.

438 439

Table S1. Criteria applied for abstract screening.

Criterion	Guidance	Outcome
Inc1FeverPopn	Does the Title/Abstract refer to clinical and/or laboratory evaluation	If Yes, retain and evaluate
	of a group of two or more humans that are explicitly described using	Inc1ZooPath.
	one or more of the of the following terms:	
	Febrile / fever(s) / pyrexia(s) /temperature \geq 38.0C / body	If No, exclude.
	temperature elevation?	
Inc1ZooPath	Does the Title/Abstract refer to diagnosis of this febrile population	If Yes, retain and evaluate
	with one or more of the pathogens/diseases included in this study	Exc1PathogenFocus.
	(table 1 in main paper)?	
		If No, evaluate Inc1Bcx.
Inc1Bcx	Does the Title/Abstract refer to the use of blood culture for the	If Yes, retain and evaluate
	diagnosis of this febrile population?	Exc1PathogenFocus.
		If No, exclude.
Exc1PathogenFocus	Does the Title/Abstract refer to a group of two or more humans that	If Yes, exclude.
	are principally classified on the basis of a common (i.e. 100%	
	frequency) aetiological diagnosis, some proportion of which may	If No, retain for full text review.
	also have fever?	

440

441 **Full Text Review**

442 Full text articles were evaluated by two independent reviewers against the criteria listed in table S2.

443 444

Table S2. Criteria applied for full text review of articles.

Criterion	Guidance	Outcome
Inc2FP	Does the article provide details/inclusion criteria for one or more human population(s) (of more than one person) that explicitly includes acute fever/febrile illness as part of the inclusion criteria?	If Yes, retain and evaluate Inc2ZP.
		If No, exclude.
Inc2ZP	Does the article provide data on the diagnosis of a zoonotic pathogen as defined on the species level list (table 1 in main paper)?	If Yes, retain and evaluate Inc2DT. If No. exclude.
Inc2DT	 Does the article provide details of one or more diagnostic test procedure(s) for one or more of the zoonotic pathogens included in this study that meets >1 of the following criteria and are used to test >1 febrile people? 1 – culture of the pathogen from sample(s) collected from a febrile person 2 – direct detection of the pathogen (e.g., by PCR based techniques) from sample(s) collected from a febrile person 3 – serological diagnosis of acute infection based on testing of both acute and convalescent phase serum samples and demonstration of seroconversion 4 – diagnosis of acute infection based on detection of pathogen-specific antibody or antigens in a single serum sample only for selected pathogens, for which widely accepted case definitions deemed pathogen specific antibody or antigen detection sufficiently accurate (table 2 in main paper) 5 – IgM detection in CSF for selected pathogens for which widely accepted case definitions include IgM detection in CSF (table 2 in main paper) 	If Yes, retain, record coding of valid tests and evaluate Exc2nTests. If No, exclude.
Exc2nTests	Does the article lack detail on the number of people tested for each study pathogen with each testing method/case definition that meets the above criteria?	If Yes, exclude. If No, retain and evaluate Exc2AllNeg.
Exc2AllNeg	Does the article give the number of people tested for a study pathogen with a test method/case definition that meets the above criteria, but all tested individuals are negative?	If Yes, exclude. If No, retain and evaluate Exc2DV.
Exc2DV	Does the article present data from a study designed to evaluate diagnostic test and/or vaccine performance without presenting 'new data' on the number/proportion of patients diagnosed with pathogen x from a described population of febrile humans?	If Yes, exclude. If No, retain and evaluate Exc2Rev.
Exc2Rev	Does the article provide a review of previously published data only, without presenting 'new' primary data on the number/proportion of patients diagnosed with pathogen x?	If Yes, exclude. If No, retain and evaluate Exc2PF.

Exc2PF	Does the article refer to a group of two or more humans that are principally	If Yes, exclude.
	classified on the basis of a common (e.g., 100% frequency) aetiological	
	diagnosis, some proportion of which may also have fever?	If No, retain and carry forward
		for data extraction.

446 Data extraction

447 Articles were excluded during data extraction if they did not meet one or more of the study inclusion criteria or 448 did meet one or more of the exclusion criteria described above for full text review. For all included studies, data 449 were extracted in two stages. First, article level data were extracted following the guidance given in table S3. 450

451 Article level data collection on individual pathogens included the names of each of the zoonotic pathogens that 452 the article described diagnostic methods for and the names of the zoonotic pathogens that were diagnosed in the 453 study. These classifications record the named zoonoses that each study reported looking for and diagnosing,

- 454 irrespective of the diagnostic approach used or level of detail given.
- 455

456 At the second step, data were extracted the for each combination of zoonotic pathogen and diagnostic test 457 approach that met study validity criteria following the guidance given in table S4. In instances where more than 458 one diagnostic method was used for a given pathogen (e.g., culture and serology-based case definitions), data on 459 the total number of individuals tested and positive using valid diagnostics for a given pathogen were aggregated. 460 Data were only extracted for diagnosed pathogens and no data were extracted for pathogens not identified, even 461 when common diagnostic approaches were used. For example, in studies conducting blood cultures the number 462 of individuals tested and positive for each identified zoonosis were extracted but no data were extracted on the 463 number of individuals who tested negative for other pathogens that could be identified by that blood culture.

When duplicate records were identified, e.g., when two articles reported identical data on pathogen detection in the same population, the later duplicate record was removed from the dataset for analysis.

467

464

468 Extracted data were used to classify study and outcome level attributes according to the pre-defined criteria for 469 bias assessment given in table S5.

470 471

Data to be extracted	Guidance
Country and WHO region	Record the country or countries in which the reported study was conducted (i.e. the country where the febrile population was identified, and data were collected).
	Country name spellings and regional classifications are as defined by the WHO.
Start year of data collection	Record the start year for the period over which the reported study was conducted (i.e. the period when the febrile population was identified, and data were collected).
End of data collection	Record the end year for the period over which the reported study was conducted (i.e. the period when the febrile population was identified, and data were collected).
Fever population description	Record a general description of the febrile population investigated in this study.
Fever population eligibility	Record the inclusion and exclusion criteria used to define eligibility of participants in this study.
Specific aetiologies excluded	Record if patients with any specific actiologies or syndromes were excluded in this study. Generalised exclusions such as "known causes of fever", "obvious focus of infection" or 'obvious explanations of febrile illness" were not classified here.
Details of exclusions	Record the details of the named aetiologies and/or syndromes excluded.
Differentiated or undifferentiated fever	Classify each study population as undifferentiated febrile population or differentiated febrile population according to the reported clinical presentation.
Febrile population classification	Classify differentiated febrile populations as: i) febrile neurologic presentation; ii) febrile haemorrhagic presentation; iii) febrile gastrointestinal presentation; iv) febrile respiratory presentation; v) specific febrile aetiology suspected (i.e., leishmaniasis, leptospirosis, plague, and rickettsiosis); vi) fever in a high specific co-morbid group (i.e. malignancy, immunocompromise).
Age	Record details provided about the ages of the febrile population
Demographic restriction	Record the details of any demographic restriction of the study population e.g., restriction of the study population to individuals meeting specific criteria for age or sex.
Urban or rural population	Record whether or not the study was conducted in a predominantly urban population, predominantly rural or mixed.
Inpatient or outpatient population	Record whether or not the febrile population described were inpatients (e.g., admitted to a healthcare facility), outpatients (e.g., patients seeking care at a healthcare facility but apparently not admitted) or if the study was population- based.
Outbreak	Record whether or not the study reports that data collection was conducted during a reported outbreak or not and the disease/syndrome described if Yes.
Zoonotic pathogens diagnosed among febrile	Was any proportion of the reported febrile population diagnosed with a zoonotic
--	--
patients	pathogen?
Pathogens looked for	For each zoonosis mentioned in the article record 1 if the article describes a
	diagnostic approach taken to identify individuals infected with that pathogen.
	Record 0 for each zoonosis where this is not the case.
Pathogens diagnosed	For each zoonosis mentioned in the article record 1 if the article reports more than
	one member of a febrile population diagnosed with this pathogen (irrespective of
	the diagnostics used). Record 0 for each zoonosis where this is not the case.

473 Table S4. Data extracted for each zoonotic pathogen diagnosed by a valid method.

Data to be extracted	Guidance
Zoonotic pathogen identified	Record the pathogen diagnosed using valid diagnostic methods.
Type of sample	Record the details of the sample(s) tested with each specific test/approach.
Diagnostic method used	Record the type of diagnostic test(s) used for each specific test/approach.
Number of individuals tested for that pathogen by	Record the number of febrile patients tested using the valid diagnostics described
valid methods	in this row of the dataset specifically.
Number of individuals diagnosed as positive for that	Record the number of febrile patients classified as positive using the valid
pathogen by valid methods	diagnostics described in this row of the dataset specifically.
Indicator for multiple diagnostic methods for given	Record Yes (1) if there is more than one row of data for this pathogen and
pathogen in this reference	reference combination.

Bias evaluation

Each population was classified as low, medium or high risk of bias against the representativeness and precision criteria as detailed in table S5.

474 475 476 477 478 479

Table S5. Criteria for bias assessment and classification of study and population level attributes.

Criteria	Risk of bias	Description
	classification	
Study representativeness	Low	Undifferentiated febrile population with no demographic restriction and no aetiologies or syndromes excluded.
	Medium	Undifferentiated febrile population with demographic restriction or one or more aetiologies and/or syndromes excluded.
	High	Febrile population classified as differentiated (table S4) or sampled during an identified disease outbreak.
Precision of percentage fevers attributed to zoonosis	Low	Number of individual tested > 385.
	Medium	Number of individuals tested > 139 and \leq 385.
	High	Number of individuals tested ≤ 139 .

482 **Results**

483

484 Table S6: Characteristics and summary of the 244 articles and 309 records of zoonosis diagnosis included in the review.

485 Study population abbreviations: UN = undifferentiated; D = differentiated; COMORBID = febrile co-morbid group GI = febrile gastrointestinal; HEM = febrile

- 486 haemorrhagic; NEU = febrile neurological; RESP; febrile respiratory; SP = specific febrile aetiology suspected.
- 487 Diagnostics abbreviations: ELISA = enzyme linked immunosorbent assay; HI = haemagglutination inhibition test; IFA = immunofluorescence assay; IgM = IgM detection;
- $\begin{array}{l} 488 \\ 489 \end{array} \text{MAT} = \text{microscopic agglutination test; PCR} = \text{polymerase chain reaction-based test; PRNT} = \text{plaque reduction neutralisation test. When multiple diagnostics used different} \\ 489 \end{array} \\ \begin{array}{l} \text{tests are separated by ",".} \end{array} \\ \end{array}$
- 490 An excel format version of this table, including additional data fields is accessible at: <u>http://dx.doi.org/10.5525/gla.researchdata.890</u>

Pathogen	First author, year of publication and reference	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
Anaplasma	Lee et al. (2018) ⁶	Republic of	2015-	UN	PCR	380	14	Medium	Medium
phagocytophilum	7	Korea	2017						
Anaplasma phagocytophilum	Yi et al. (2017)'	Republic of Korea	2003-2012	UN	PCR	70	5	Low	High
Ananlasma	Zhang et al. $(2011)^8$	China	2012	D SP	PCR IFA	26	8	High	High
phagocytophilum	Zhang et al. (2011)	Cillia	2004	0.01		20	0	1151	ingu
Anaplasma	Zhang et al. (2013)9	China	2009-	UN	Culture, IFA, PCR	421	46	Low	Low
phagocytophilum			2010						
Babesia microti	Zhou et al. (2013) ¹⁰	China	2012-	UN	PCR	449	10	Low	Low
			2013						
Bartonella spp.	Chaudhry et al. (2018) ¹¹	India	2012-	UN	PCR	28	2	Medium	High
D			2016	101		500			-
Bartonella spp.	Faruque et al. $(2017)^{12}$	Thailand	2008-2009	UN	Culture	720	1	Medium	Low
Bartonella spp.	Hercik et al. (2017) ¹³	United Republic	2014-	UN	PCR	842	4	Low	Low
Durionena oppi		of Tanzania	2015	011	1011	0.2			2011
Bartonella spp.	Kosoy et al. (2010) ¹⁴	Thailand	2002-	UN	Culture, PCR	261	14	Low	Medium
			2003						
Bartonella spp.	Simpson et al. (2018) ¹⁵	South Africa	2012-	UN	PCR	74	7	Medium	High
			2013						
Bartonella spp.	Sokhna et al. (2013) ¹⁶	Senegal	2011-	UN	PCR	440	23	Low	Low
			2012						
Borrelia spp.	Aarsland et al. $(2012)^{17}$	Ethiopia	2009-	UN	PCR	102	2	Low	High
	10		2010						
Borrelia spp.	Elhelw et al. $(2014)^{18}$	Egypt	2008-	UN	PCR	15	4	Medium	High
			2009						
<i>Borrelia</i> spp.	Fotso Fotso et al.	Algeria	2012-	UN	PCR	257	4	Low	Medium
D	(2015)19	I	2012	101	DCD	1.5.4	11.5		-
Borrelia spp.	Mediannikov et al. $(2014)^{20}$	Senegal	2010-	UN	PCR	1566	115	Low	Low
Demaliner	(2014)	T	2011	LINI	DCD	227	21		Madin
<i>borrella</i> spp.	$(2007)^{21}$	Togo	2002-	UN	PUK	237	21	Low	wiedium
<i>Borrelia</i> spp	Parola et al $(2011)^{22}$	Senegal	2004	UN	PCR	206	27	Medium	Medium
Dorrena spp.		Senegui	2000			200	27		

Pathogen	First author, year of publication and	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
	reference		1 crioù	Chassinearion		resteu	1 0010110	couning	Dias counig
Borrelia spp.	Reller et al. $(2011)^{23}$	United Republic of Tanzania	NA-NA	UN	PCR	310	13	Low	Medium
Borrelia spp.	Sarih et al. (2009) ²⁴	Morocco	2005- 2006	UN	PCR	127	23	Medium	High
Borrelia spp.	Sokhna et al. (2013) ¹⁶	Senegal	2011- 2012	UN	PCR	440	35	Low	Low
Borrelia spp.	Toure et al. (2017) ²⁵	Mali	2012- 2012	UN	PCR	8	3	Medium	High
Brucella spp.	Afifi et al. (2005) ²⁶	Egypt	1999- 2003	D SP	Culture	9883	275	High	Low
Brucella spp.	Barua et al. (2016) ²⁷	India	2010- 2012	D SP	Culture	102	18	High	High
Brucella spp.	Boone et al. (2017) ²⁸	Madagascar	2011- 2013	UN	PCR	1020	15	Low	Low
Brucella spp.	Bouley et al. (2012) ²⁹	United Republic of Tanzania	2007- 2008	UN	MAT	455	16	Low	Low
Brucella spp.	Carugati et al. (2018) ³⁰	United Republic of Tanzania	2007- 2014	UN	MAT	1680	45	Low	Low
Brucella spp.	Cash-Goldwasser et al. (2018) ³¹	United Republic of Tanzania	2012- 2014	UN	Microagglutination test	562	39	Low	Low
Brucella spp.	Ciftdogan et al. (2011) ³²	Turkey	2003- 2008	UN	Culture	92	3	Low	High
Brucella spp.	Crump et al. (2013) ³³	United Republic of Tanzania	2007- 2008	UN	MAT	453	16	Low	Low
Brucella spp.	Fadeel et al. (2006) ³⁴	Egypt	1999- 2003	UN	Culture	1177	202	Low	Low
Brucella spp.	Jennings et al. (2007) ³⁵	Egypt	2002- 2003	UN	Culture	4490	115	Medium	Low
Brucella spp.	Kamal et al. (2013) ³⁶	Saudi Arabia	2009- 2011	UN	PCR	101	50	Low	High
Brucella spp.	Kuila et al. (2017) ³⁷	India	2013- 2015	UN	PCR	2088	88	Low	Low
Brucella spp.	Manock et al. (2009) ³⁸	Ecuador	2001- 2004	UN	ELISA	275	4	Medium	Medium
Brucella spp.	Mattar et al. (2017) ³⁹	Colombia	2012- 2013	UN	Rose Bengal plate test	100	1	Medium	High
Brucella spp.	Migisha et al. (2018) ⁴⁰	Uganda	2017- 2017	D SP	Culture	235	10	High	Medium
Brucella spp.	Nandagopal et al. $(2012)^{41}$	India	2008- 2009	UN	PCR	301	3	Low	Medium
Brucella spp.	Paul et al. (2017) ⁴²	Saudi Arabia	2014- 2016	UN	Culture	377	37	Low	Medium
Brucella spp.	Rahman et al. $(2016)^{43}$	Bangladesh	2007- 2008	D SP	PCR	6	3	High	High

Pathogen	First author, year of publication and	Country	Study Period	Study Population	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias	Precision Bias Coding
	reference		1 0110 u			resteu	1 0010110	coung	Dias counig
Campylobacter spp.	Ali et al. (2016) ⁴⁴	Pakistan	2011- 2014	D RESP	Culture	356	2	High	Medium
Campylobacter spp.	Bottieau et al. $(2011)^{45}$	No Specific	2000-	D GI	Stool examination,	512	47	High	Low
17 11		Country	2006		Culture				
Campylobacter spp.	Hogan et al. (2018) ⁴⁶	Ghana	2013- 2015	UN	PCR	240	21	Low	Medium
Campylobacter spp.	Naheed et al. (2008) ⁴⁷	Bangladesh	2003- 2004	UN	Culture	867	1	Low	Low
Coxiella burnetii	Angelakis et al. (2014) ⁴⁸	No Specific Country	2008- 2012	UN	PCR	1888	7	Low	Low
Coxiella burnetii	Crump et al. (2013) ³³	United Republic of Tanzania	2007- 2008	UN	IFA	482	24	Low	Low
Coxiella burnetii	Esmaeili et al. (2017) ⁴⁹	Iran (Islamic Republic of)	2013- 2013	UN	ELISA	116	16	Medium	High
Coxiella burnetii	Greiner et al. (2018) ⁵⁰	Thailand	2002- 2005	UN	IFA	1784	5	Medium	Low
Coxiella burnetii	Hamilton et al. (2011) ⁵¹	Iraq	2008- 2008	UN	PCR, IFA	18	8	Low	High
Coxiella burnetii	Hercik et al. (2017) ¹³	United Republic of Tanzania	2014- 2015	UN	PCR	842	2	Low	Low
Coxiella burnetii	Khalili et al. (2016) ⁵²	Iran (Islamic Republic of)	2014- 2015	UN	PCR	92	7	Low	High
Coxiella burnetii	Manock et al. (2009) ³⁸	Ecuador	2001- 2004	UN	ELISA	33	15	Medium	High
Coxiella burnetii	Mazyad et al. (2007) ⁵³	Egypt	2006- 2006	UN	PCR	150	5	Low	Medium
Coxiella burnetii	Metanat et al. (2014) ⁵⁴	Iran (Islamic Republic of)	2011- 2011	UN	IFA	105	23	Low	High
Coxiella burnetii	Njeru et al. (2016) ⁵⁵	Kenya	2014- 2015	UN	PCR	448	10	Low	Low
Coxiella burnetii	Pradeep et al. (2017) ⁵⁶	India	2016- 2016	UN	PCR	72	2	Medium	High
Coxiella burnetii	Ratmanov et al. $(2013)^{57}$	Senegal	2008- 2011	UN	PCR	874	4	Low	Low
Coxiella burnetii	Reller et al. (2016) ⁵⁸	Nicaragua	2008- 2009	UN	IFA	748	10	Low	Low
Coxiella burnetii	Sokhna et al. (2013) ¹⁶	Senegal	2011- 2012	UN	PCR	440	2	Low	Low
Coxiella burnetii	Toure et al. $(2017)^{25}$	Mali	2012- 2012	UN	PCR	8	1	Medium	High
Crimean-Congo haemorrhagic fever virus	Alam et al. (2013) ⁵⁹	Pakistan	2008- 2008	D HEM	PCR, IgM	44	16	High	High

Pathogen	First author, year of	Country	Study Bariad	Study Population	Diagnostics Used	Number	Number	Representativeness Bias	Precision Bigs Coding
	reference		reriou	Classification		Testeu	rositive	Coung	blas Couling
Crimean-Congo	Ali et al. (2007) ⁶⁰	Pakistan	2001-	D HEM	PCR	10	3	High	High
haemorrhagic fever			2001						
Crimean-Congo	Bukbuk et al. (2016) ⁶¹	Nigeria	2010-	D SP	PCR	380	1	High	Medium
haemorrhagic fever	()		2014						
virus									_
Crimean-Congo	Kuchuloria et al. $(2016)^{62}$	Georgia	2008-	UN	lgM	537	3	Medium	Low
virus	(2010)		2011						
Eastern equine encephalitis virus	Aguilar et al. (2007) ⁶³	Peru	NA-NA	D NEU	ELISA	153	2	High	Medium
Ehrlichia spp.	Chikeka et al. (2016) ⁶⁴	Nicaragua	NA-NA	UN	IFA	748	1	Low	Low
Ehrlichia spp.	Ndip et al. (2009) ⁶⁵	Cameroon	2003-	UN	PCR	118	12	Medium	High
Hantavirus	Armien et al. (2013) ⁶⁶	Panama	2005	D SP	PCR	150	117	High	Medium
Trainia (II as	· · · · · · · · · · · · · · · · · · ·	1 unumu	2010	2 51	Ton	100	11,		
Hantavirus	Castillo Ore et al.	Peru	2007-	UN	IgM	5174	9	Low	Low
Hentovinus	$(2012)^{67}$	India	2010	DUEM	ELISA	152	22	Link	Madium
Hamavirus	Chandy et al. (2005)	Illula	2002-2003	DIEW	LLISA	152	23	ingn	weatum
Hantavirus	Chandy et al. (2009) ⁶⁹	India	2005-	UN	ELISA, IFA, PCR	347	86	Low	Medium
	C1 1 (2017) ⁷⁰		2007	1.01	DI IGA	200			
Hantavirus	Chau et al. $(2017)^{10}$	Mozambique	2012-2014	UN	ELISA	200	4	Low	Medium
Hantavirus	Chen et al. (2014) ⁷¹	China	2011-	D HEM	PCR, IFA	85	33	High	High
			2012						
Hantavirus	Chrispal et al. (2010) ⁷²	India	2007- 2008	UN	ELISA	398	1	Low	Low
Hantavirus	Cruz et al. (2012) ⁷³	Bolivia	2008-	UN	PCR, IgM	372	9	Low	Medium
		(Plurinational State of)	2009						
Hantavirus	Klempa et al. (2010) ⁷⁴	Guinea	2001-	D HEM	ELISA, Neutralization	717	8	High	Low
	1 ()		2005		test				
Hantavirus	Kuchuloria et al. $(2014)^{75}$	Georgia	2008- 2011	UN	IgM	537	2	Low	Low
Hantavirus	Liu et al. (2007) ⁷⁶	China	2002-	UN	IFA, PCR	130	49	Low	High
Hantavirus	Mattar et al. (2017) ³⁹	Colombia	2004	UN	ELISA	100	4	Medium	High
			2013						
Hantavirus	Suharti et al. (2009) ⁷⁷	Indonesia	1995- 1996	D SP	ELISA	60	5	High	High
Hantavirus	Thompson et al. $(2015)^{78}$	Nepal	2008- 2011	UN	IgM	125	2	Low	High
Hantavirus	Zhan et al. (2017) ⁷⁹	China	2011-	D SP	IgM, PCR	141	2	High	Medium
			2011						

Pathogen	First author, year of	Country	Study Period	Study Population	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias	Precision Bias Coding
	reference		I tillou	Clussification		resteu	1 USHIVE	couning	Dias Counig
Japanese encephalitis	Anga et al. (2010) ⁸⁰	Papua New Guinea	2007-2008	D NEU	IgM	129	2	High	High
Japanese encephalitis	Chatteriee et al. (2004) ⁸¹	India	1996-	D NEU	НІ	72	24	High	High
virus	(-•••)		1999						
Japanese encephalitis virus	Chheng et al. (2013) ⁸²	Cambodia	2009- 2010	UN	ELISA	107	6	Low	High
Japanese encephalitis	Dias et al. (2018) ⁸³	India	2014- 2014	UN	RNA sequencing	4	1	Low	High
Japanese encephalitis virus	Ellis et al. (2006) ⁸⁴	Thailand	1999- 2002	UN	ELISA	530	1	Low	Low
Japanese encephalitis	Joshi et al. (2013) ⁸⁵	India	2007- 2007	D NEU	ELISA	152	4	High	Medium
Japanese encephalitis	Kakoti et al. (2013) ⁸⁶	India	2012- 2012	D HEM	IgM	223	49	High	Medium
Japanese encephalitis virus	Kumar et al. (2015) ⁸⁷	India	NA-NA	D NEU	IgM	108	54	High	High
Japanese encephalitis virus	Maude et al. (2016) ⁸⁸	Bangladesh	2012- 2012	UN	IgM	300	1	Medium	Medium
Japanese encephalitis virus	Medhi et al. (2017) ⁸⁹	India	2012- 2014	D NEU	ELISA	1707	601	High	Low
Japanese encephalitis virus	Rasul et al. (2012) ⁹⁰	Bangladesh	2007- 2009	D NEU	ELISA	130	2	High	High
Japanese encephalitis virus	Rauf et al. (2018) ⁹¹	India	2014- 2014	D NEU	IgM, PCR	54	8	High	High
Japanese encephalitis virus	Rayamajhi et al. (2006) ⁹²	Nepal	2000- 2001	D NEU	IgM	117	54	High	High
Japanese encephalitis virus	Rayamajhi et al. (2007) ⁹³	Nepal	2000- 2001	D NEU	IgM	94	54	High	High
Japanese encephalitis virus	Rayamajhi et al. (2011) ⁹⁴	Nepal	2006- 2008	D NEU	IgM	86	9	High	High
Japanese encephalitis virus	Sarkar et al. (2012) ⁹⁵	India	2010- 2010	D NEU	IgM	43	23	High	High
Japanese encephalitis virus	Singh et al. (2009) ⁹⁶	Nepal	2003- 2004	D NEU	IgM	107	19	High	High
Japanese encephalitis virus	Singh et al. (2014) ⁹⁷	India	2008- 2011	D NEU	PCR	1410	10	High	<mark>Low</mark>
Japanese encephalitis virus	Swami et al. (2008) ⁹⁸	India	2003- 2005	D NEU	IgM, PCR	40	9	High	High
Japanese encephalitis virus	Taraphdar et al. (2012) ⁹⁹	India	2010- 2010	UN	PCR	58	23	Low	High
Lassa virus	Akhuemokhan et al. $(2017)^{100}$	Nigeria	2009- 2010	UN	PCR	243	13	Low	Medium
Lassa virus	Boisen et al. (2015) ¹⁰¹	Sierra Leone	2012- 2012	D SP	PCR, Antigen detection	53	29	High	High

Pathogen	First author, year of	Country	Study	Study Population	Diagnostics Used	Number	Number	Representativeness Bias	Precision
	reference		Period	Classification		lested	Positive	Coding	Bias Coding
Lassa virus	Ehichioya et al.	Nigeria	2005-	D SP	PCR	451	2	High	Low
	$(2012)^{102}$		2008						
Lassa virus	Schoepp et al. (2014) ¹⁰³	Sierra Leone	2006-	D SP	ELISA	253	7	High	Medium
L agaa vimta	Shahu at al $(2018)^{104}$	Niceria	2008	DSD	DCD	24	11		High
Lassa virus	Sileilu et al. (2018)	Nigeria	2010-2016	DSF	FUK	54	11	111gu	mgn
Lassa virus	Stremlau et al. (2015) ¹⁰⁵	Nigeria	NA-NA	D HEM	Sequencing	195	104	High	Medium
Leishmania donovani	Hailu et al. (2006) ¹⁰⁶	Ethiopia	NA-NA	D SP	Microscopy, Culture	103	49	High	High
Leishmania donovani	Joshi et al. (2006) ¹⁰⁷	Nepal	1998-	D SP	Bone marrow	996	284	High	Low
Laighmania donovani	Multhton at al. $(2015)^{108}$	Sudan	2002	DSP	Culture	295	101	Link	Madium
Leisnmania aonovani	Mukiltar et al. (2015)	Sudali	2012-2014	DSF	Culture	285	191	riign	wedium
Leishmania donovani	Rijal et al. (2004) ¹⁰⁹	Nepal	2000-	D SP	Microscopy	261	155	High	Medium
_			2002						
Leptospira spp.	Albuquerque Filho et al. $(2011)^{110}$	Brazıl	2009-2009	UN	Culture	97	56	Low	High
Leptospira spp.	Alia et al. (2019) ¹¹¹	Malaysia	2016-	D SP	PCR	50	13	High	High
_			2017						
Leptospira spp.	Barragan et al. (2016) ¹¹²	Ecuador	2013- 2015	UN	PCR	668	100	Low	Low
Leptospira spp.	Biggs et al. (2011) ¹¹³	United Republic	2007-	UN	MAT	831	70	Low	Low
		of Tanzania	2008						
Leptospira spp.	Blacksell et al. (2006) ¹¹⁴	Lao People's	2001-	UN	MAT	186	5	Medium	Medium
		Democratic	2003						
T , ·	D 1 (1 (2011))]5	Republic	2001	IDI		410	120	No. 11	T
Leptospira spp.	Boonslip et al. (2011)	Inaliand	2001-2002	UN	Culture, PCK	418	120	<u>Iviedium</u>	Low
Leptospira spp.	Chansamouth et al.	Lao People's	2006-	UN	MAT	158	1	Medium	Medium
	$(2016)^{116}$	Democratic	2010						
	× /	Republic							
Leptospira spp.	Chheng et al. (2013) ⁸²	Cambodia	2009-	UN	Culture, PCR	1179	17	Low	Low
T	Chieffrage et al.	E I.e.	2010	UN	DCD	210	122		Madin
Lepiospira spp.	$(2015)^{117}$	Ecuador	2011-2012	UN	PCK	210	152	Low	Medium
Leptospira spp.	Cohen et al. (2007) ¹¹⁸	Thailand	2002-	UN	MAT	704	67	Low	Low
			2003						
Leptospira spp.	Crump et al. $(2013)^{33}$	United Republic of Tanzania	2007- 2008	UN	MAT	453	40	Low	Low
Leptospira spp.	Dassanavake et al.	Sri Lanka	2007-	UN	МАТ	123	62	Low	High
20p100p11 4 0pp.	$(2009)^{119}$	STI Bullitu	2008			120	52		<u> </u>
Leptospira spp.	Dittrich et al. (2018) ¹²⁰	Lao People's	2014-	D SP	MAT	248	12	High	Medium
		Democratic Republic	2015						

Pathogen	First author, year of	Country	Study Poriod	Study Population	Diagnostics Used	Number Tested	Number Positivo	Representativeness Bias	Precision Bias Coding
	reference		renou	Classification		Testeu	rositive	Counig	Blas Couling
Leptospira spp.	Ellis et al. (2006) ⁸⁴	Thailand	1999- 2002	UN	IgM, MAT	613	107	Low	Low
Leptospira spp.	Faruque et al. (2017) ¹²	Thailand	2008- 2009	UN	Culture	720	1	Medium	Low
Leptospira spp.	Gasem et al. (2009) ¹²¹	Indonesia	2005- 2006	UN	PCR	137	4	Low	High
Leptospira spp.	Guillebaud et al. $(2018)^{122}$	Madagascar	2014- 2015	UN	PCR	682	1	Low	Low
Leptospira spp.	Hem et al. (2016) ¹²³	Cambodia	2007- 2009	UN	MAT	2044	17	Low	Low
Leptospira spp.	Hercik et al. (2017) ¹³	United Republic of Tanzania	2014- 2015	UN	PCR	842	22	Low	Low
Leptospira spp.	Hercik et al. (2018) ¹²⁴	United Republic of Tanzania	2014- 2014	UN	PCR	191	3	Low	Medium
Leptospira spp.	Ismail et al. (2006) ¹²⁵	Egypt	1999- 2003	UN	MAT	886	141	Low	Low
Leptospira spp.	Kendall et al. (2010) ¹²⁶	Bangladesh	2001- 2001	UN	MAT	78	7	Low	High
Leptospira spp.	Koizumi et al. (2009) ¹²⁷	Sri Lanka	2008- 2008	D SP	PCR	107	3	High	High
Leptospira spp.	LaRocque et al. (2005) ¹²⁸	Bangladesh	2001- 2001	D SP	PCR	359	63	High	Medium
Leptospira spp.	Libraty et al. (2007) ¹²⁹	Thailand	1994- 1999	UN	MAT	812	14	Low	Low
Leptospira spp.	Mattar et al. $(2017)^{39}$	Colombia	2012- 2013	UN	ELISA, MAT	100	27	Medium	High
Leptospira spp.	Matthias et al. (2008) ¹³⁰	Peru	2003- 2006	UN	Culture	881	45	Medium	Low
Leptospira spp.	Mayxay et al. (2013) ¹³¹	Lao People's Democratic Republic	2008- 2010	UN	Culture, MAT, PCR	1932	137	Low	Low
Leptospira spp.	Maze et al. $(2016)^{132}$	United Republic of Tanzania	2012- 2014	UN	MAT	1017	19	Low	Low
Leptospira spp.	McGready et al. $(2010)^{133}$	Thailand	2004- 2006	UN	Culture, MAT	203	5	Medium	Medium
Leptospira spp.	Mueller et al. $(2014)^{134}$	Cambodia	2008- 2010	UN	PCR	1193	112	Low	Low
Leptospira spp.	Murdoch et al. (2004) ¹³⁵	Nepal	2001- 2001	UN	PCR	26	11	Low	High
Leptospira spp.	Murray et al. (2011) ¹³⁶	Egypt	2005- 2007	UN	Culture	2441	47	Low	Low
Leptospira spp.	Natarajaseenivasan et al. (2004) ¹³⁷	India	2000- 2000	D SP	MAT, Culture	29	7	High	High

Pathogen	First author, year of publication and	Country	Study Period	Study Population	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias	Precision Bias Coding
	reference		1 criou	Chussineuron		1 corea	1 OSHUTC	coung	Dias counig
Leptospira spp.	Natarajaseenivasan et al. $(2012)^{138}$	India	2009- 2009	D SP	PCR	75	71	High	High
Leptospira spp.	Phimda et al. (2007) ¹³⁹	Thailand	2003- 2005	D SP	Culture, MAT	296	55	High	Medium
Leptospira spp.	Rafizah et al. (2013) ¹⁴⁰	Malaysia	NA-NA	UN	MAT	999	53	Medium	Low
Leptospira spp.	Rao et al. (2005) ¹⁴¹	India	NA-NA	D SP	ELISA	70	2	High	High
Leptospira spp.	Ravindar et al. (2018) ¹⁴²	India	2016- 2017	UN	PCR	100	13	Low	High
Leptospira spp.	Reller et al. $(2014)^{143}$	Nicaragua	2008- 2009	UN	PCR	748	17	Low	Low
Leptospira spp.	Ribeiro et al. (2017) ¹⁴⁴	Mozambique	2012- 2015	UN	ELISA, MAT	373	3	Low	Medium
Leptospira spp.	Ricapa-Antay et al. $(2018)^{145}$	Peru	2016- 2016	UN	PCR	139	16	Medium	Medium
Leptospira spp.	Rubbo et al. (2018) ¹⁴⁶	Central African Republic	2012- 2015	UN	MAT	32	2	Medium	High
Leptospira spp.	Sengupta et al. (2017) ¹⁴⁷	India	2012- 2014	UN	PCR	150	5	Medium	Medium
Leptospira spp.	Suttinont et al. (2006) ¹⁴⁸	Thailand	2001-2002	UN	Culture, MAT, IFA	845	293	Medium	Low
Leptospira spp.	Thipmontree et al. $(2014)^{149}$	Thailand	2001- 2012	UN	Culture, IFA, PCR	726	118	Medium	Low
Leptospira spp.	Waggoner et al. $(2017)^{150}$	Kenya	2014- 2015	UN	PCR	385	1	Low	Low
Leptospira spp.	Wuthiekanun et al. $(2007)^{151}$	Thailand	2001- 2002	UN	Culture	989	83	Low	Low
Leptospira spp.	Zida et al. (2018) ¹⁵²	Burkina Faso	2014- 2015	UN	PCR	781	1	Low	Low
Listeria spp.	El-Mahallawy et al. $(2005)^{153}$	Egypt	1999- 1999	D COMORBID	Culture	1135	1	High	Low
Nipah virus	Chadha et al. (2006) ¹⁵⁴	India	2001- 2001	D NEU	PCR	6	5	High	High
Orientia tsutsugamushi	Blacksell et al. (2007) ¹⁵⁵	Nepal	2002- 2004	UN	IFA	103	5	Low	High
Orientia tsutsugamushi	Blacksell et al. (2010) ¹⁵⁶	Lao People's Democratic Republic	2003- 2007	D SP	IFA	1030	101	High	Low
Orientia tsutsugamushi	Blacksell et al. (2016) ¹⁵⁷	Thailand	2006- 2007	UN	IFA, PCR, Culture	152	37	Medium	Medium
Orientia tsutsugamushi	Blacksell et al. (2016) ¹⁵⁸	Thailand	2007- 2008	UN	PCR, Culture	135	22	Medium	High
Orientia tsutsugamushi	Chansamouth et al. $(2016)^{116}$	Lao People's Democratic Republic	2006- 2010	UN	IFA, Culture, PCR	217	16	Medium	Medium

Pathogen	First author, year of publication and	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
	reference							8	8
Orientia tsutsugamushi	Chen et al. (2014) ⁷¹	China	2011- 2012	D HEM	PCR	85	1	High	High
Orientia tsutsugamushi	Chheng et al. (2013) ⁸²	Cambodia	2009-	UN	PCR, IFA	1179	17	Low	Low
Orientia tsutsugamushi	Jung et al. (2015) ¹⁵⁹	Democratic People's Republic of Korea	2009- 2013	UN	IFA	382	3	Low	Medium
Orientia tsutsugamushi	Kingston et al. (2018) ¹⁶⁰	Bangladesh	2014- 2015	UN	PCR	416	45	Low	Low
Orientia tsutsugamushi	Kocher et al. (2017) ¹⁶¹	Peru	2013- 2013	UN	ELISA	1124	1	Low	Low
Orientia tsutsugamushi	Kumar et al. $(2014)^{162}$	India	2011- 2012	UN	PCR	199	48	Low	Medium
Orientia tsutsugamushi	Liu et al. (2007) ⁷⁶	China	2002- 2004	UN	IFA, PCR	130	46	Low	High
Orientia tsutsugamushi	Maude et al. (2015) ¹⁶³	Bangladesh	2012- 2012	UN	PCR	300	1	Low	Medium
Orientia tsutsugamushi	Mayxay et al. (2013) ¹³¹	Lao People's Democratic Republic	2008- 2010	UN	Culture, PCR	1871	170	Low	Low
Orientia tsutsugamushi	McGready et al. $(2010)^{133}$	Thailand	2004- 2006	UN	Culture, PCR, IFA	203	11	Medium	Medium
Orientia tsutsugamushi	Mueller et al. (2014) ¹³⁴	Cambodia	2008- 2010	UN	PCR	1193	47	Low	Low
Orientia tsutsugamushi	Paris et al. (2011) ¹⁶⁴	Thailand	2007- 2008	UN	IFA, Culture, PCR	138	26	Medium	High
Orientia tsutsugamushi	Phimda et al. (2007) ¹³⁹	Thailand	2003- 2005	D SP	IFA	230	34	High	Medium
Orientia tsutsugamushi	Reller et al. (2012) ¹⁶⁵	Sri Lanka	2007- 2007	UN	ELISA	883	17	Low	Low
Orientia tsutsugamushi	Saisongkorh et al. $(2004)^{166}$	Thailand	NA-NA	UN	PCR	36	9	Medium	High
Orientia tsutsugamushi	Sonthayanon et al. $(2006)^{167}$	Thailand	2000- 2001	UN	IFA	722	183	Low	Low
Orientia tsutsugamushi	Srinivasan et al. $(2017)^{168}$	India	2014- 2015	D SP	PCR	68	6	High	High
Orientia tsutsugamushi	Thipmontree et al. $(2016)^{169}$	Thailand	2011- 2012	UN	IFA	495	98	Low	Low
Orientia tsutsugamushi	Tshokey et al. (2018) ¹⁷⁰	Bhutan	2014- 2015	UN	PCR	1044	7	Medium	Low
Pasteurella spp.	Bengre et al. (2012) ¹⁷¹	India	2009- 2011	D COMORBID	Culture	50	1	High	High
Pasteurella spp.	El-Mahallawy et al. $(2005)^{153}$	Egypt	1999- 1999	D COMORBID	Culture	1135	6	High	Low

Pathogen	First author, year of publication and	Country	Study Period	Study Population	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias	Precision Bias Coding
	reference		i citou	Classification		I Cottu	1 Ushtive	County	Dias Counig
Rickettsia (SFGR)	Aarsland et al. $(2012)^{17}$	Ethiopia	2009- 2010	UN	PCR	102	4	Low	High
Rickettsia (SFGR)	Bouchaib et al. (2018) ¹⁷²	Algeria	2013- 2015	UN	PCR	166	57	Low	Medium
Rickettsia (SFGR)	Chowdhury et al. $(2017)^{173}$	Bangladesh	2015- 2016	D SP	PCR	414	81	High	Low
Rickettsia (SFGR)	Crump et al. (2013) ³³	United Republic of Tanzania	2007- 2008	UN	IFA	450	36	Low	Low
Rickettsia (SFGR)	dos Santos et al. $(2012)^{174}$	Brazil	2009- 2010	D HEM	PCR	110	36	High	High
Rickettsia (SFGR)	Eremeeva et al. (2013) ¹⁷⁵	Guatemala	2007- 2007	UN	PCR, IFA	17	1	High	High
Rickettsia (SFGR)	Faruque et al. $(2017)^{12}$	Thailand	2008- 2009	UN	PCR	360	1	Medium	Medium
Rickettsia (SFGR)	Gaowa et al. (2018) ¹⁷⁶	China	2015- 2016	UN	PCR	261	6	Medium	Medium
Rickettsia (SFGR)	Hidalgo et al. (2013) ¹⁷⁷	Colombia	2010- 2011	D SP	IFA	26	7	High	High
Rickettsia (SFGR)	Kingston et al. (2018) ¹⁶⁰	Bangladesh	2014- 2015	UN	PCR	416	2	Low	Low
Rickettsia (SFGR)	Kuloglu et al. (2012) ¹⁷⁸	Turkey	2003- 2009	D SP	PCR, IFA	126	97	High	High
Rickettsia (SFGR)	Liu et al. (2016) ¹⁷⁹	China	2014- 2014	D SP	PCR	733	56	High	Low
Rickettsia (SFGR)	Maina et al. (2012) ¹⁸⁰	Kenya	2008- 2010	UN	PCR	699	50	Low	Low
Rickettsia (SFGR)	Manock et al. (2009) ³⁸	Ecuador	2001- 2004	UN	ELISA	214	6	Medium	Medium
Rickettsia (SFGR)	Mattar et al. (2017) ³⁹	Colombia	2012- 2013	UN	IFI	100	2	Medium	High
Rickettsia (SFGR)	Mayxay et al. (2013) ¹³¹	Lao People's Democratic Republic	2008- 2010	UN	PCR	1849	2	Low	Low
Rickettsia (SFGR)	Mediannikov et al. $(2010)^{181}$	Senegal	2008- 2009	UN	PCR	204	8	Medium	Medium
Rickettsia (SFGR)	Mediannikov et al. $(2013)^{182}$	No Specific Country	2010- 2012	UN	PCR	2612	321	Low	Low
Rickettsia (SFGR)	Mongkol et al. (2018) ¹⁸³	Thailand	2012- 2014	D SP	PCR	168	8	High	Medium
Rickettsia (SFGR)	Mourembou et al. $(2015)^{184}$	Gabon	2011- 2012	UN	PCR	793	8	Low	Low
Rickettsia (SFGR)	Mourembou et al. $(2015)^{185}$	Gabon	2013- 2014	UN	PCR	410	42	Low	Low

Pathogen	First author, year of publication and	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
	reference						_		
Rickettsia (SFGR)	Ndip et al. (2004) ¹⁸⁶	Cameroon	2003- 2003	UN	PCR	118	7	Medium	High
Rickettsia (SFGR)	Prakash et al. (2012) ¹⁸⁷	India	2006-2008	D SP	PCR	58	34	High	High
Rickettsia (SFGR)	Reller et al. (2012) ¹⁶⁵	Sri Lanka	2007- 2007	UN	IFA	883	108	Low	Low
Rickettsia (SFGR)	Reller et al. (2016) ⁵⁸	Nicaragua	2008-2009	UN	IFA	748	6	Low	Low
Rickettsia (SFGR)	Richards et al. (2010) ¹⁸⁸	Kenya	2006- 2008	UN	PCR	163	6	Medium	Medium
Rickettsia (SFGR)	Sokhna et al. (2013) ¹⁶	Senegal	2011- 2012	UN	PCR	440	28	Low	Low
Rickettsia (SFGR)	Sothmann et al. $(2017)^{189}$	Ghana	2012- 2012	UN	PCR	431	6	Medium	Low
Rickettsia (TGR)	Blacksell et al. (2007) ¹⁵⁵	Nepal	2002- 2004	UN	IFA	103	9	Low	High
Rickettsia (TGR)	Blacksell et al. (2010) ¹⁵⁶	Lao People's Democratic Republic	2003- 2007	D SP	IFA	1030	183	High	Low
Rickettsia (TGR)	Chansamouth et al. $(2016)^{116}$	Lao People's Democratic Republic	2006- 2010	UN	IFA, Culture, PCR	217	15	Medium	Medium
Rickettsia (TGR)	Chen et al. (2014) ⁷¹	China	2011- 2012	D HEM	IFA	85	1	High	High
Rickettsia (TGR)	Chheng et al. (2013) ⁸²	Cambodia	2009- 2010	UN	PCR, IFA	1179	5	Low	Low
Rickettsia (TGR)	Chowdhury et al. $(2017)^{173}$	Bangladesh	2015- 2016	D SP	PCR	414	1	High	Low
Rickettsia (TGR)	Crump et al. (2013) ³³	United Republic of Tanzania	2007- 2008	UN	IFA	450	2	Low	Low
Rickettsia (TGR)	Faruque et al. $(2017)^{12}$	Thailand	2008- 2009	UN	PCR	720	1	Medium	Low
Rickettsia (TGR)	Gasem et al. (2009) ¹²¹	Indonesia	2005- 2006	UN	IFA	137	4	Low	High
Rickettsia (TGR)	Hidalgo et al. (2008) ¹⁹⁰	Colombia	2005- 2005	UN	IFA	120	14	Low	High
Rickettsia (TGR)	Hidalgo et al. (2013) ¹⁷⁷	Colombia	2010- 2011	D SP	IFA	26	2	High	High
Rickettsia (TGR)	Kingston et al. (2018) ¹⁶⁰	Bangladesh	2014- 2015	UN	PCR	416	24	Low	Low
Rickettsia (TGR)	Manock et al. (2009) ³⁸	Ecuador	2001- 2004	UN	ELISA	255	8	Medium	Medium
Rickettsia (TGR)	Maude et al. (2015) ¹⁶³	Bangladesh	2012- 2012	UN	PCR	300	2	Low	Medium

Pathogen	First author, year of publication and	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
	reference		1 chiou	Chassinearion		resteu	1 obline	Counig	Dias counig
Rickettsia (TGR)	Mayxay et al. (2013) ¹³¹	Lao People's	2008-	UN	PCR	1849	12	Low	Low
		Democratic	2010						
		Republic							
Rickettsia (TGR)	McGready et al. $(2010)^{133}$	Thailand	2004- 2006	UN	Culture, PCR, IFA	203	14	Medium	Medium
Rickettsia (TGR)	Mongkol et al. (2018) ¹⁸³	Thailand	2012- 2014	D SP	PCR	168	3	High	Medium
Rickettsia (TGR)	Pradhan et al. (2012) ¹⁹¹	Nepal	2006- 2007	UN	PCR	1039	22	Low	Low
Rickettsia (TGR)	Reller et al. (2012) ¹⁶⁵	Sri Lanka	2007-	UN	IFA	883	61	Low	Low
Distantia (TCD)	D-11	NI:	2007	LINI	IE A	749	1	T	T
Rickettsia (IGR)	Keller et al. $(2016)^{50}$	Nicaragua	2008-2009	UN	IFA	/48	1	Low	Low
Rickettsia (TGR)	Thompson et al. $(2015)^{78}$	Nepal	2008- 2011	UN	IFA	125	21	Low	High
Rickettsia (TGR)	Zimmerman et al.	Nepal	2001-	UN	PCR	756	50	Low	Low
,	$(2008)^{192}$	1	2001						
Rickettsia spp.	Hercik et al. (2017) ¹³	United Republic	2014-	UN	PCR	842	2	Low	Low
**	· · · ·	of Tanzania	2015						
Rickettsia spp.	Kingston et al. (2018) ¹⁶⁰	Bangladesh	2014- 2015	UN	PCR	416	3	Low	Low
Rickettsia spp.	Mongkol et al. (2018) ¹⁸³	Thailand	2012-	D SP	PCR	168	15	High	Medium
11	8		2014				-		
Rickettsia spp.	Mueller et al. (2014) ¹³⁴	Cambodia	2008-	UN	PCR	1193	2	Low	Low
**			2010						
Rickettsia spp.	Ricapa-Antay et al.	Peru	2016-	UN	PCR	139	9	Medium	Medium
	$(2018)^{145}$		2016						
Rift Valley fever virus	Baudin et al. (2016) ¹⁹³	Sudan	2011-	UN	IgM	130	17	Medium	High
			2012						
Rift Valley fever virus	Guillebaud et al.	Madagascar	2014-	UN	PCR	682	1	Low	Low
D:0 V-11 6	$(2018)^{122}$	Ciama Lasara	2015	D CD	ELICA	252	5	111.1	Madina
Rift valley lever virus	Schoepp et al. (2014)	Sierra Leone	2006-	D SP	ELISA	255	5	nign	Medium
Rift Valley fever virus	Sow et al. (2016) ¹⁹⁴	Senegal	2008	UN	PCR	13845	1	Low	Low
Kint valicy level virus	50w et al. (2010)	Sellegal	2003-	UN	ICK	15045	1	Low	LOW
Salmonella (non-	Akinvemi et al.	Nigeria	2004-	D GI	Culture	235	16	High	Medium
Typhi)	$(2007)^{195}$	8	2005						
Salmonella (non-	Akinyemi et al.	Nigeria	2010-	UN	Culture	135	2	Low	High
Typhi)	$(2015)^{196}$		2011						
Salmonella (non-	Al-Emran et al.	No Specific	2011-	UN	Culture	8161	28	Low	Low
Typhi)	(2016) ¹⁹⁷	Country	2013						
Salmonella (non-	Al-Emran et al.	No Specific	NA-NA	UN	Culture	10636	77	Low	Low
Typhi)	(2016)198	Country	1	1	1			1	

Pathogen	First author, year of publication and	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
	reference								
<i>Salmonella</i> (non- Typhi)	Andualem et al. $(2014)^{199}$	Ethiopia	2010- 2011	D SP	Culture	270	7	High	Medium
Salmonella (non-	Bello et al. (2018) ²⁰⁰	Nigeria	NA-NA	D COMORBID	Culture	225	10	High	Medium
Typhi)	· · ·	-							
<i>Salmonella</i> (non- Typhi)	Biggs et al. (2014) ²⁰¹	United Republic of Tanzania	2006- 2008	UN	Culture	4106	163	Low	<mark>Low</mark>
Salmonella (non-	Bilman et al. (2017) ²⁰²	Turkey	2014-	D GI	Culture	48	10	High	High
Typhi)			2014						
Salmonella (non- Typhi)	Brooks et al. $(2005)^{203}$	Bangladesh	2000- 2001	UN	Culture	888	2	Low	Low
Salmonella (non- Typhi)	Brown et al. (2017) ²⁰⁴	Nigeria	2013- 2014	D COMORBID	Culture	116	1	High	High
Salmonella (non- Typhi)	Chheng et al. (2013) ⁸²	Cambodia	2009- 2010	UN	Culture	1180	1	Low	Low
Salmonella (non- Typhi)	Crump et al. (2011) ²⁰⁵	United Republic of Tanzania	2007- 2008	UN	Culture	224	2	Low	Medium
Salmonella (non- Typhi)	Crump et al. (2011) ²⁰⁶	United Republic of Tanzania	2007- 2008	UN	Culture	139	1	Low	Medium
Salmonella (non- Typhi)	D'Acremont et al. (2014) ²⁰⁷	United Republic of Tanzania	2008- 2008	UN	Culture	424	1	Low	Low
Salmonella (non- Typhi)	Davies et al. (2016) ²⁰⁸	Nigeria	NA-NA	UN	Culture	129	15	Low	High
Salmonella (non- Typhi)	Dong et al. (2014) ²⁰⁹	China	2009- 2011	UN	Culture	2529	3	Low	Low
Salmonella (non- Typhi)	Eibach et al. (2016) ²¹⁰	Ghana	2007- 2012	UN	Culture	7172	215	Low	Low
Salmonella (non- Typhi)	Gordon et al. (2010) ²¹¹	Malawi	NA-NA	UN	Culture	355	70	Low	Medium
Salmonella (non- Typhi)	Hercik et al. (2017) ¹³	United Republic of Tanzania	2014- 2015	UN	PCR	842	4	Low	Low
Salmonella (non- Typhi)	Hogan et al. (2018) ⁴⁶	Ghana	2013- 2015	UN	Culture	1238	28	Low	Low
Salmonella (non- Typhi)	Saha et al. (2017) ²¹²	Bangladesh	2012- 2016	UN	Culture	5185	1	Medium	Low
Salmonella (non- Typhi)	Jeon et al. (2018) ²¹³	No Specific Country	2010- 2014	UN	Culture	13431	94	Low	Low
Salmonella (non- Typhi)	Kibuuka et al. (2015) ²¹⁴	Uganda	2012- 2012	UN	Culture	250	11	Medium	Medium
Salmonella (non- Typhi)	Kiemde et al. (2018) ²¹⁵	Burkina Faso	2015- 2015	UN	Culture	684	31	Low	Low
Salmonella (non- Typhi)	Ley et al. (2009) ²¹⁶	United Republic of Tanzania	2008- 2009	UN	Culture	1680	49	Low	Low
Salmonella (non- Typhi)	Mahende et al. (2014) ²¹⁷	United Republic of Tanzania	2013- 2013	UN	Culture	808	2	Low	Low

Pathogen	First author, year of publication and	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias	Precision Bias Coding
	reference		1 thing			1 corea	1 0510110	couning	Dias counig
Salmonella (non-	Marks et al. (2017) ²¹⁸	No Specific	2010-	UN	Culture	13431	94	Low	Low
Typhi)		Country	2014						
Salmonella (non-	Meremo et al. $(2012)^{219}$	United Republic	NA-NA	UN	Culture	346	12	Low	Medium
Typhi)		of Tanzania							
<i>Salmonella</i> (non- Typhi)	Moon et al. $(2013)^{220}$	Mozambique	2012- 2012	D COMORBID	Culture	258	28	High	Medium
Salmonella (non- Typhi)	Mourembou et al. $(2016)^{221}$	Gabon	NA-NA	UN	PCR	410	3	Low	Low
Salmonella (non-	Mtove et al. (2010) ²²²	United Republic	2008-	UN	Culture	1502	45	Low	Low
Typhi)		of Tanzania	2009				-		
Salmonella (non-	Mtove et al. (2011) ²²³	United Republic	2006-	UN	Culture	6836	232	Low	Low
Typhi)		of Tanzania	2010						
Salmonella (non-	Mtove et al. (2011) ²²⁴	United Republic	2009-	UN	Culture	965	1	Medium	Low
Typhi)		of Tanzania	2010						
<i>Salmonella</i> (non- Typhi)	Nadjm et al. (2010) ²²⁵	United Republic of Tanzania	NA-NA	UN	Culture	3639	160	Low	Low
Salmonella (non-	Nadjm et al. (2012) ²²⁶	United Republic	2007-	UN	Culture	198	5	Low	Medium
Typhi)		of Tanzania	2007						
Salmonella (non-	Ochaya et al. (2018) ²²⁷	Uganda	2013-	D COMORBID	Culture	256	3	High	Medium
Typhi)			2013						
Salmonella (non-	Onchiri et al. (2016) ²²⁸	Kenya	2012-	UN	Culture	1496	19	Low	Low
Typhi)			2014						
Salmonella (non-	Onyango et al. (2008) ²²⁹	Kenya	2004-	D GI	Culture	20	18	High	High
Typhi)			2005			1.0			
Salmonella (non-	Onyango et al. $(2009)^{250}$	Kenya	2004-	D GI	Culture	40	20	High	High
Typhi)	P 1 4 1 (201 () ²³]		2005	TDI	C. I.	12.421	70		
Salmonella (non-	Park et al. $(2016)^{251}$	No Specific	2010-	UN	Culture	13431	73	Low	Low
Typhi)	$P_{\text{otense}} = 1 (2004)^{232}$	Country Malanai	2014	TINI	Caltana	252	4.4	T	Madin
Salmonella (non-	Peters et al. $(2004)^{-1}$	Malawi	2000-	UN	Culture	352	44	Low	Medium
Salmonolla (non	Product at al. $(2012)^{191}$	Nonal	2000	UN	Culture	1020	2	Low	Low
Typhi)	Flauliali et al. (2012)	Nepai	2000-	UN	Culture	1039	2	Low	LOW
Salmonella (non-	Preziosi et al. (2015) ²³³	Mozambique	2007	UN	Culture	841	10	Low	Low
Typhi)	1 Teziosi et al. (2013)	Wozamolque	2014	011	Culture	0-11	10	Low	Low
Salmonella (non-	Sothmann et al.	Ghana	2012-	UN	Culture	2306	24	Low	Low
Typhi)	$(2015)^{234}$	Onunu	2012	011	Culture	2000		2011	
Salmonella (non-	Tezcan et al. (2006) ²³⁵	Turkey	1996-	D COMORBID	Culture	621	1	High	Low
Typhi)	()		2004						
Salmonella (non-	Wiersinga et al.	Gabon	2012-	UN	Culture	941	5	Low	Low
Typhi)	$(2015)^{23\overline{6}}$		2013						
Schistosoma mansoni	Degarege et al. (2012) ²³⁷	Ethiopia	2010-	UN	Microscopy	702	82	Low	Low
		-	2011						_
Streptococcus spp.	Hinjoy et al. (2017) ²³⁸	Thailand	2015-	UN	Culture	70	1	Medium	High
			2015						

Pathogen	First author, year of publication and reference	Country	Study Period	Study Population Classification	Diagnostics Used	Number Tested	Number Positive	Representativeness Bias Coding	Precision Bias Coding
Toxoplasma gondii	Adurthi et al. (2008) ²³⁹	India	NA-NA	D COMORBID	PCR	162	21	High	Medium
Venezuelan Equine Encephalitis virus	Forshey et al. (2010) ²⁴⁰	No Specific Country	2000- 2007	UN	Culture, PCR, ELISA	13259	250	Low	Low
Venezuelan Equine Encephalitis virus	Kocher et al. (2016) ²⁴¹	Peru	2013- 2014	UN	PCR	2054	22	Low	Low
Venezuelan Equine Encephalitis virus	Manock et al. (2009) ³⁸	Ecuador	2001- 2004	UN	Culture, IgM, IFA, PCR	229	2	Medium	Medium
Venezuelan Equine Encephalitis virus	Morrison et al. (2008) ²⁴²	Peru	2005- 2006	UN	IFA, PCR	1136	34	High	Low
West Nile virus	Boisen et al. (2015) ¹⁰¹	Sierra Leone	2012- 2012	D SP	PCR	23	4	High	High
West Nile virus	Chinikar et al. (2012) ²⁴³	Iran (Islamic Republic of)	2008- 2009	D NEU	PCR	249	3	High	Medium
West Nile virus	Elyan et al. (2014) ²⁴⁴	Afghanistan	2008- 2010	UN	PRNT	277	24	Medium	Medium
West Nile virus	Hercik et al. (2017) ¹³	United Republic of Tanzania	2014- 2015	UN	PCR	842	1	Low	Low
West Nile virus	Kumar et al. (2014) ²⁴⁵	India	2009- 2010	UN	PCR	105	27	High	High
West Nile virus	Rutvisuttinunt et al. $(2014)^{246}$	Nepal	2009- 2010	D SP	PCR	14	2	High	High
West Nile virus	Tigoi et al. (2015) ²⁴⁷	Kenya	2009- 2012	UN	PRNT	379	47	Low	Medium
West Nile virus	Williams et al. (2018) ²⁴⁸	United Republic of Tanzania	2013- 2014	UN	Sequencing	12	2	Medium	High
Yersinia pestis	Sinyange et al. (2016) ²⁴⁹	Zambia	2015- 2015	D SP	PCR	12	6	High	High

Table S7: Summary of number of studies from each global region represented in the study dataset.

WHO Region	Number (%) of malaria endemic countries contributing data	Number (%) of studies contributing data (n=235 ¹)
Africa	21 of 44 (47·7%)	83 (35.3%)
Americas	8 of 23 (34.8%)	21 (8.9%)
Eastern Mediterranean	8 of 14 (57·1%)	22 (9.4%)
Europe	2 of 9 (22·2%)	6 (2.6%)
South-East Asia	8 of 10 (80.0%)	81 (34.5%)
Western Pacific	6 of 10 (60·0%)	22 (9.4%)
¹ Table includes data from 235	of 244 articles included in the review, excluding	9 articles reporting data from

Page 28 of 42

multiple countries excluded for this analysis.

Figure S1: Barchart showing the number of articles contributing data for each country included in the study, displayed by country and WHO region.

- Figure S2: Barcharts showing number of articles from each global region contributing data for each of 30
- 506 507 508 509 510 zoonoses.
- Plot panels indicate the WHO defined global region and bar colour indicates type of pathogen.

514	
515	References
516	
517	1. R Core Team. R: A Language and Environment for Statistical Computing, 2018, http://www.R-
518	project.org (Accessed 01 October 2019).
519	2. Taylor LH. Latham SM. Woolhouse ME. Risk factors for human disease emergence. <i>Philos Trans R</i>
520	Soc Lond R Riol Sci 2001: 356: 983-9
521	3 WHO Zoonoses 2016 http://www.who.int/zoonoses/diseases/en/ (Accessed 01 June 2016)
521	 MITO: ZOOHOSES. 2010. <u>http://www.who.mit/ZOOHOSES/diseases/clip</u> (Accessed 01 June 2010). OIE OIE Listed diseases infections and infectations in force in 2016. 2016. <u>http://www.vio.int/animal.</u>
522	4. OIL. OIL-Listed diseases, infections and infestations in force in 2010. 2010. <u>http://www.oic.int/animal-</u> health in the world/oie listed diseases 2016/ (Accessed 01 Jun 2016)
525 524	Malfa ND, Dunavan CD, Diamand I, Origina of maior hyman infactions diagonas, 2007; 117, 270, 82
52 4 525	5. Wolle ND, Dullavall CF, Dialiloliu J. Oligins of inajor human infectious diseases. 2007, 447. 279-65.
525	6. Lee SH, Park S, Lee YS, Lee HK, Hwang SD. Diagnosis and molecular characteristics of numan
520 527	infections caused by Anaplasma phagocytophilum in South Korea. J Microbiol 2018; 56: 84/-53.
527	7. Y1 J, Kim KH, Ko MK, Lee EY, Choi SJ, Oh MD. Human Granulocytic Anaplasmosis as a Cause of
528	Febrile Illness in Korea Since at Least 2006. Am J Trop Med Hyg 2017; 96: 777-82.
529	8. Zhang L, Cui F, Wang L, et al. Investigation of anaplasmosis in Yiyuan County, Shandong Province,
530	China. <i>Asian Pac J Trop Med</i> 2011; 4 : 568-72.
531	9. Zhang L, Wang G, Liu Q, et al. Molecular analysis of <i>Anaplasma phagocytophilum</i> isolated from
532	patients with febrile diseases of unknown etiology in China. <i>PLoS One</i> 2013; 8: e57155.
533	10. Zhou X, Li SG, Chen SB, et al. Co-infections with <i>Babesia microti</i> and <i>Plasmodium</i> parasites along the
534	China-Myanmar border. Infect Dis Poverty 2013; 2: 24.
535	11. Chaudhry R, Kokkayil P, Ghosh A, et al. <i>Bartonella henselae</i> infection in diverse clinical conditions in
536	a tertiary care hospital in north India. Indian J Med Res 2018; 147: 189-94.
537	12. Faruque LI, Zaman RU, Gurley ES, et al. Prevalence and clinical presentation of <i>Rickettsia</i> , <i>Coxiella</i> ,
538	Leptospira, Bartonella and chikungunya virus infections among hospital-based febrile patients from December
539	2008 to November 2009 in Bangladesh. BMC Infect Dis 2017; 17: 141.
540	13. Hercik C, Cosmas L, Mogeni OD, et al. A diagnostic and epidemiologic investigation of acute febrile
541	illness (AFI) in Kilombero, Tanzania. PLoS One 2017; 12: e0189712.
542	14. Kosoy M, Bai Y, Sheff K, et al. Identification of <i>Bartonella</i> infections in febrile human patients from
543	Thailand and their potential animal reservoirs. Am J Trop Med Hyg 2010; 82: 1140-5.
544	15. Simpson GJG, Quan V, Frean J, et al. Prevalence of Selected Zoonotic Diseases and Risk Factors at a
545	Human-Wildlife-Livestock Interface in Mpumalanga Province, South Africa. 2018; 18: 303-10.
546	16. Sokhna C, Mediannikov O, Fenollar F, et al. Point-of-care laboratory of pathogen diagnosis in rural
547	Senegal. PLoS Negl Trop Dis 2013; 7: e1999.
548	17. Aarsland SJ, Castellanos-Gonzalez A, Lockamy KP, et al. Treatable bacterial infections are
549	underrecognized causes of fever in Ethiopian children. Am J Trop Med Hyg 2012; 87: 128-33.
550	18. Elhelw RA, El-Enbaawy MI, Samir A. Lyme borreliosis: A neglected zoonosis in Egypt. <i>Acta Trop</i>
551	2014; 140 : 188-92.
552	19. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus <i>Borrelia</i>
553	algerica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015; 93: 1070-3.
554	20. Mediannikov O, Socolovschi C, Bassene H, et al. <i>Borrelia crocidurae</i> infection in acutely febrile
555	patients, Senegal. Emerg Infect Dis 2014; 20: 1335-8.
556	21. Nordstrand A, Bunikis I, Larsson C, et al. Tickborne relapsing fever diagnosis obscured by malaria,
557	Togo. Emerg Infect Dis 2007; 13: 117-23.
558	22. Parola P, Diatta G, Socolovschi C, et al. Tick-borne relapsing fever borreliosis, rural Senegal. <i>Emerg</i>
559	Infect Dis 2011; 17: 883-5.
560	23. Reller ME, Clemens EG, Schachterle SE, Mtove GA, Sullivan DJ, Dumler JS. Multiplex 5' nuclease-
561	quantitative PCR for diagnosis of relapsing fever in a large Tanzanian cohort. J Clin Microbiol 2011; 49: 3245-
562	9.
563	24. Sarih M, Garnier M, Boudebouch N, et al. <i>Borrelia hispanica</i> relapsing fever, Morocco. <i>Emerg Infect</i>
564	<i>Dis</i> 2009; 15 : 1626-9.
565	25. Toure M, Petersen PT, Bathily SN, et al. Molecular Evidence of Malaria and Zoonotic Diseases Among
566	Rapid Diagnostic Test-Negative Febrile Patients in Low-Transmission Season, Mali. Am J Trop Med Hyg 2017;
567	96 : 335-7.
568	26. Aftifi S, Earhart K, Azab MA, et al. Hospital-based surveillance for acute febrile illness in Egypt: a
569 570	tocus on community-acquired bloodstream infections. Am J Trop Med Hyg 2005; 73: 392-9.
5/0	27. Barua A, Kumar A, Thavaselvam D, et al. Isolation & characterization of <i>Brucella melitensis</i> isolated
5/1 572	trom patients suspected for human brucellosis in India. <i>Indian J Med Res</i> 2016; 143 : 652-8.
512	28. Boone I, Henning K, Hilbert A, et al. Are brucellosis, Q fever and melioidosis potential causes of

573 febrile illness in Madagascar? *Acta Trop* 2017; **172**: 255-62.

- 574 29. Bouley AJ, Biggs HM, Stoddard RA, et al. Brucellosis among Hospitalized Febrile Patients in Northern 575 Tanzania. Am J Trop Med Hyg 2012; 87: 1105-11. 576 30. Carugati M, Biggs HM, Maze MJ, et al. Incidence of human brucellosis in the Kilimanjaro Region of 577 Tanzania in the periods 2007-2008 and 2012-2014. Trans R Soc Trop Med Hyg 2018; 112: 136-43. 578 Cash-Goldwasser S, Maze MJ, Rubach MP, et al. Risk Factors for Human Brucellosis in Northern 31. 579 Tanzania. Am J Trop Med Hyg 2018; 98: 598-606. 580 32. Ciftdogan DY, Bayram N, Vardar F. Brucellosis as a cause of fever of unknown origin in children 581 admitted to a tertiary hospital in the Aegean region of Turkey. Vector Borne Zoonotic Dis 2011; 11: 1037-40. 582 Crump JA, Morrissey AB, Nicholson WL, et al. Etiology of severe non-malaria febrile illness in 33. 583 Northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis 2013; 7: e2324. 584 34. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA. Rapid enzyme-linked 585 immunosorbent assay for the diagnosis of human brucellosis in surveillance and clinical settings in Egypt. 2006; 27: 975-81. 586 587 Jennings GJ, Hajjeh RA, Girgis FY, et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans 35. 588 *R Soc Trop Med Hyg* 2007; **101**: 707-13. 589 Kamal IH, Al Gashgari B, Moselhy SS, Kumosani TA, Abulnaja KO. Two-stage PCR assay for 36. 590 detection of human brucellosis in endemic areas. BMC Infect Dis 2013; 13: 145. 591 Kuila P, Dutta D, Chakrabarty U, Chatterjee D, Das S. Comparison of serological tests and PCR for 37. 592 diagnosis of human brucellosis suffering from fever. Asian J Pharm Clin Res 2017; 10: 109-11. 593 38. Manock SR, Jacobsen KH, de Bravo NB, et al. Etiology of acute undifferentiated febrile illness in the 594 Amazon basin of Ecuador. Am J Trop Med Hyg 2009; 81: 146-51. 595 Mattar S, Tique V, Miranda J, Montes E, Garzon D. Undifferentiated tropical febrile illness in Cordoba, 39. 596 Colombia: Not everything is dengue. J Infect Public Health 2017; 10: 507-12. 597 Migisha R, Dan N, Boum Y, et al. Prevalence and risk factors of brucellosis among febrile patients 40. 598 attending a community hospital in south western Uganda. Sci Rep 2018; 8: 15465. 599 41. Nandagopal B, Sankar S, Lingesan K, Appu K, Sridharan G, Gopinathan A. Application of polymerase 600 chain reaction to detect Burkholderia pseudomallei and Brucella species in buffy coat from patients with febrile 601 illness among rural and peri-urban population. J Glob Infect Dis 2012; 4: 31-7. 602 42. Paul E, Abdelkareem M, Malik S. Overview of human brucellosis in Aseer region, Saudi Arabia. Aust 603 Med J 2017; 10: 202-10. 604 Rahman AA, Berkvens D, Saegerman C, et al. Seroprevalence of brucellosis in patients with prolonged 43. 605 fever in Bangladesh. J Infect Dev Ctries 2016; 10: 939-46. 606 Ali A, Akhund T, Warraich GJ, et al. Respiratory viruses associated with severe pneumonia in children 44. 607 under 2 years old in a rural community in Pakistan. J Med Virol 2016; 88: 1882-90. 608 45. Bottieau E, Clerinx J, Vlieghe E, et al. Epidemiology and outcome of Shigella, Salmonella and 609 *Campylobacter* infections in travellers returning from the tropics with fever and diarrhoea. *Acta Clin Belg* 2011; 610 **66**: 191-5. 611 Hogan B, Eibach D, Krumkamp R, et al. Malaria Coinfections in Febrile Pediatric Inpatients: A 46. 612 Hospital-Based Study From Ghana. Clin Infect Dis 2018; 66: 1838-45. 613 Naheed A, Ram PK, Brooks WA, et al. Clinical value of Tubex and Typhidot rapid diagnostic tests for 47. 614 typhoid fever in an urban community clinic in Bangladesh. Diagn Microbiol Infect Dis 2008; 61: 381-6. 615 Angelakis E, Mediannikov O, Socolovschi C, et al. Coxiella burnetii-positive PCR in febrile patients in 48. 616 rural and urban Africa. Int J Infect Dis 2014; 28: 107-10. 617 Esmaeili S, Golzar F, Ayubi E, Naghili B, Mostafavi E. Acute Q fever in febrile patients in 49. 618 northwestern of Iran. PLoS Negl Trop Dis 2017; 11: e0005535. 619 Greiner AL, Bhengsri S, Million M, et al. Acute Q Fever Case Detection among Acute Febrile Illness 50. 620 Patients, Thailand, 2002-2005. Am J Trop Med Hyg 2018; 98: 252-7. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute 621 51. 622 Q fever at a combat support hospital in Iraq. Mil Med 2011; 176: 103-5. 623 52. Khalili M, Naderi HR, Salehnia N, Abiri Z. Detection of Coxiella burnetii in acute undifferentiated 624 febrile illnesses (AUFIs) in Iran. Trop Doct 2016; 46: 221-4. 625 Mazyad SA, Hafez AO. Q fever (Coxiella burnetii) among man and farm animals in North Sinai, Egypt. 53. 626 J Egypt Soc Parasitol 2007; 37: 135-42. 627 Metanat M, Sepehri Rad N, Alavi-Naini R, et al. Acute Q fever among febrile patients in Zahedan, 54. 628 southeastern Iran. Turk J Med Sci 2014; 44: 99-103. 629 Njeru J, Henning K, Pletz MW, et al. Febrile patients admitted to remote hospitals in Northeastern 55. 630 Kenya: seroprevalence, risk factors and a clinical prediction tool for Q-Fever. BMC Infect Dis 2016; 16: 244. 631 Pradeep J, Stephen S, Ambroise S, Gunasekaran D. Diagnosis of Acute Q Fever by Detection of 56. 632 Coxiella burnetii DNA using Real-Time PCR, Employing a Commercial Genesig Easy Kit. J Clin Diagn Res
- 632 Coxiella burnetii DNA using Real-Time PCR, Employing a Commercial Genesig Easy Kit. J Clin Diagn Res
 633 2017; 11: DC10-DC3.

- 634 57. Ratmanov P, Bassene H, Fenollar F, et al. The correlation of Q fever and Coxiella burnetii DNA in 635 household environments in rural Senegal. Vector Borne Zoonotic Dis 2013; 13: 70-2. 636 Reller ME, Chikeka I, Miles JJ, et al. First Identification and Description of Rickettsioses and Q Fever 58. 637 as Causes of Acute Febrile Illness in Nicaragua. PLoS Negl Trop Dis 2016; 10: e0005185. 638 Alam MM, Khurshid A, Sharif S, et al. Genetic analysis and epidemiology of Crimean Congo 59. 639 Hemorrhagic fever viruses in Baluchistan province of Pakistan. BMC Infect Dis 2013; 13: 201. 640 60. Ali N, Chotani RA, Anwar M, Nadeem M, Karamat KA, Tariq WU. A Crimean-Congo haemorrhagic 641 fever outbreak in northern Balochistan. J Coll Physicians Surg Pak 2007; 17: 477-81. Bukbuk DN, Dowall SD, Lewandowski K, et al. Serological and Virological Evidence of Crimean-642 61. 643 Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria. 644 PLoS Negl Trop Dis 2016; 10: e0005126. 645 Kuchuloria T, Imnadze P, Mamuchishvili N, et al. Hospital-Based Surveillance for Infectious Etiologies 62. 646 Among Patients with Acute Febrile Illness in Georgia, 2008-2011. Am J Trop Med Hyg 2016; 94: 236-42. 647 Aguilar PV, Robich RM, Turell MJ, et al. Endemic eastern equine encephalitis in the Amazon region of 63. 648 Peru. Am J Trop Med Hyg 2007; 76: 293-8. 649 Chikeka I, Matute AJ, Dumler JS, Woods CW, Mayorga O, Reller ME. Use of Peptide-Based Enzyme-64. 650 Linked Immunosorbent Assay followed by Immunofluorescence Assay To Document Ehrlichia chaffeensis as a 651 Cause of Febrile Illness in Nicaragua. J Clin Microbiol 2016; 54: 1581-5. 652 Ndip LM, Labruna M, Ndip RN, Walker DH, McBride JW. Molecular and clinical evidence of 65. 653 Ehrlichia chaffeensis infection in Cameroonian patients with undifferentiated febrile illness. Ann Trop Med 654 Parasitol 2009; 103: 719-25. 655 Armien B, Pascale JM, Munoz C, et al. Hantavirus fever without pulmonary syndrome in Panama. Am J 66. 656 *Trop Med Hyg* 2013; **89**: 489-94. 657 Castillo Ore RM, Forshey BM, Huaman A, et al. Serologic evidence for human hantavirus infection in 67. 658 Peru. Vector Borne Zoonotic Dis 2012; 12: 683-9. 659 68. Chandy S, Mitra S, Sathish N, et al. A pilot study for serological evidence of hantavirus infection in 660 human population in south India. Indian J Med Res 2005; 122: 211-5. 661 Chandy S, Yoshimatsu K, Boorugu HK, et al. Acute febrile illness caused by hantavirus: serological 69. 662 and molecular evidence from India. Trans R Soc Trop Med Hyg 2009; 103: 407-12. 663 Chau R, Bhatt N, Manhica I, et al. First serological evidence of hantavirus among febrile patients in 70. 664 Mozambique. Int J Infect Dis 2017; 61: 51-5. 665 71. Chen ZH, Qin XC, Song R, et al. Co-circulation of multiple hemorrhagic fever diseases with distinct 666 clinical characteristics in Dandong, China. PLoS One 2014; 9: e89896. 667 72. Chrispal A, Boorugu H, Gopinath KG, et al. Acute undifferentiated febrile illness in adult hospitalized 668 patients: the disease spectrum and diagnostic predictors - an experience from a tertiary care hospital in South 669 India. Trop Doct 2010; 40: 230-4. 670 Cruz CD, Forshey BM, Vallejo E, et al. Novel strain of Andes virus associated with fatal human 73. 671 infection, central Bolivia. Emerg Infect Dis 2012; 18: 750-7. 672 Klempa B, Koivogui L, Sylla O, et al. Serological Evidence of Human Hantavirus Infections in Guinea, 74. 673 West Africa. J Infect Dis 2010; 201: 1031-4. 674 Kuchuloria T, Imnadze P, Chokheli M, et al. Short Report: Viral Hemorrhagic Fever Cases in the 75. 675 Country of Georgia: Acute Febrile Illness Surveillance Study Results. Am J Trop Med Hyg 2014; 91: 246-8. 676 Liu YX, Feng D, Zhang Q, et al. Key differentiating features between scrub typhus and hemorrhagic 76. 677 fever with renal syndrome in northern China. Am J Trop Med Hyg 2007; 76: 801-5. 678 77. Suharti C, van Gorp EC, Dolmans WM, et al. Hanta virus infection during dengue virus infection 679 outbreak in Indonesia. Acta Med Indones 2009; 41: 75-80. 680 Thompson CN, Blacksell SD, Paris DH, et al. Undifferentiated febrile illness in Kathmandu, Nepal. Am 78. 681 J Trop Med Hyg 2015; 92: 875-8. 682 Zhan J, Cheng J, Hu B, et al. Pathogens and epidemiologic feature of severe fever with 79. 683 thrombocytopenia syndrome in Hubei province, China. Virus Res 2017; 232: 63-8. 684 80. Anga G, Barnabas R, Kaminiel O, et al. The aetiology, clinical presentations and outcome of febrile 685 encephalopathy in children in Papua New Guinea. Ann Trop Paediatr 2010; 30: 109-18. 686 Chatterjee S, Chattopadhyay D, Bhattacharya MK, Mukherjee B. Serosurveillance for Japanese 81. 687 encephalitis in children in several districts of West Bengal, India. Acta Paediatr 2004; 93: 390-3. 688 Chheng K, Carter MJ, Emary K, et al. A prospective study of the causes of febrile illness requiring 82. 689 hospitalization in children in Cambodia. PLoS One 2013; 8: e60634. 690 83. Dias M, Pattabiraman C, Siddappa S, et al. Complete assembly of a dengue virus type 3 genome from a 691 recent genotype III clade by metagenomic sequencing of serum. Wellcome Open Res 2018; 3: 44. 692 Ellis RD, Fukuda MM, McDaniel P, et al. Causes of fever in adults on the Thai-Myanmar border. Am J 84.
- 693 *Trop Med Hyg* 2006; 74: 108-13.

- 694 85. Joshi R, Mishra PK, Joshi D, et al. Clinical presentation, etiology, and survival in adult acute 695 encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013; 115: 1753-61. 696 86. Kakoti G, Dutta P, Ram Das B, Borah J, Mahanta J. Clinical profile and outcome of Japanese 697 encephalitis in children admitted with acute encephalitis syndrome. Biomed Res Int 2013; 2013: 152656. 698 Kumar S, Pandey AK, Gutch M, et al. Acute viral encephalitis clinical features and outcome: 87. 699 Experience from a tertiary center of North India. Ann Trop Med Public 2015; 8: 262-6. 700 88. Maude RR, Ghose A, Samad R, et al. A prospective study of the importance of enteric fever as a cause 701 of non-malarial febrile illness in patients admitted to Chittagong Medical College Hospital, Bangladesh. BMC 702 Infect Dis 2016; 16: 567. 703 Medhi M, Saikia L, Patgiri SJ, Lahkar V, Hussain ME, Kakati S. Incidence of Japanese Encephalitis 89. 704 amongst acute encephalitis syndrome cases in upper Assam districts from 2012 to 2014: A report from a tertiary 705 care hospital. Indian J Med Res 2017; 146: 267-71. 706 Rasul CH, Muhammad F, Hossain MJ, Ahmed KU, Rahman M. Acute meningoencephalitis in 90. 707 hospitalised children in southern Bangladesh. Malays J Med Sci 2012; 19: 67-73. 708 91. Rauf A, Singhi S, Nallasamy K, Walia M, Ray P. Non-Respiratory and Non-Diarrheal Causes of Acute 709 Febrile Illnesses in Children Requiring Hospitalization in a Tertiary Care Hospital in North India: A Prospective 710 Study. Am J Trop Med Hyg 2018; 99: 783-8. Rayamajhi A, Singh R, Prasad R, Khanal B, Singhi S. Clinico-laboratory profile and outcome of 711 92. 712 Japanese encephalitis in Nepali children. Ann Trop Paediatr 2006; 26: 293-301. 713 93. Rayamajhi A, Singh R, Prasad R, Khanal B, Singhi S. Study of Japanese encephalitis and other viral 714 encephalitis in Nepali children. Pediatr Int 2007; 49: 978-84. 715 Rayamajhi A, Ansari I, Ledger E, et al. Clinical and prognostic features among children with acute 94. 716 encephalitis syndrome in Nepal; a retrospective study. BMC Infect Dis 2011; 11. 717 Sarkar A, Taraphdar D, Mukhopadhyay SK, Chakrabarti S, Chatterjee S. Molecular evidence for the 95. 718 occurrence of Japanese encephalitis virus genotype I and III infection associated with acute Encephalitis in 719 Patients of West Bengal, India, 2010. Virol J 2012; 9. 720 Singh RR, Chaudhary SK, Bhatta NK, Khanal B, Shah D. Clinical and etiological profile of acute 96. 721 febrile encephalopathy in Eastern Nepal. Indian J Pediatr 2009; 76: 1109-11. 722 97. Singh KP, Mishra G, Jain P, et al. Co-positivity of anti-dengue virus and anti-Japanese encephalitis 723 virus IgM in endemic area: co-infection or cross reactivity? Asian Pac J Trop Med 2014; 7: 124-9. 724 Swami R, Ratho RK, Mishra B, Singh MP. Usefulness of RT-PCR for the diagnosis of Japanese 98. 725 encephalitis in clinical samples. Scand J Infect Dis 2008; 40: 815-20. 726 99 Taraphdar D, Sarkar A, Chatterjee S. Mass scale screening of common arboviral infections by an 727 affordable, cost effective RT-PCR method. Asian Pac J Trop Biomed 2012; 2: 97-101. 728 100. Akhuemokhan OC, Ewah-Odiase RO, Akpede N, et al. Prevalence of Lassa Virus Disease (LVD) in 729 Nigerian children with fever or fever and convulsions in an endemic area. PLoS Negl Trop Dis 2017; 11: 730 e0005711. 731 Boisen ML, Schieffelin JS, Goba A, et al. Multiple Circulating Infections Can Mimic the Early Stages 101. 732 of Viral Hemorrhagic Fevers and Possible Human Exposure to Filoviruses in Sierra Leone Prior to the 2014 733 Outbreak. Viral Immunol 2015; 28: 19-31. 734 Ehichioya DU, Asogun DA, Ehimuan J, et al. Hospital-based surveillance for Lassa fever in Edo State, 102. 735 Nigeria, 2005-2008. Trop Med Int Health 2012; 17: 1001-4. 736 Schoepp RJ, Rossi CA, Khan SH, Goba A, Fair JN. Undiagnosed acute viral febrile illnesses, Sierra 103. 737 Leone. Emerg Infect Dis 2014; 20: 1176-82. 738 104. Shehu NY, Gomerep SS, Isa SE, et al. Lassa Fever 2016 Outbreak in Plateau State, Nigeria-The 739 Changing Epidemiology and Clinical Presentation. Front Public Health 2018; 6: 232. 740 Stremlau MH, Andersen KG, Folarin OA, et al. Discovery of novel rhabdoviruses in the blood of 105. 741 healthy individuals from West Africa. PLoS Negl Trop Dis 2015; 9: e0003631. 742 Hailu A, Schoone GJ, Diro E, et al. Field evaluation of a fast anti-Leishmania antibody detection assay 106. 743 in Ethiopia. Trans R Soc Trop Med Hyg 2006; 100: 48-52. 744 107. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006; 38: 139-48. 745 108. Mukhtar M, Abdoun A, Ahmed AE, et al. Diagnostic accuracy of rK28-based immunochromatographic 746 rapid diagnostic tests for visceral leishmaniasis: a prospective clinical cohort study in Sudan. Trans R Soc Trop 747 Med Hvg 2015; 109: 594-600. 748 Rijal S, Boelaert M, Regmi S, et al. Evaluation of a urinary antigen-based latex agglutination test in the 109. 749 diagnosis of kala-azar in eastern Nepal. Trop Med Int Health 2004; 9: 724-9. 750 110. Albuquerque Filho AP, Araujo JG, Souza IQ, et al. Validation of a case definition for leptospirosis 751 diagnosis in patients with acute severe febrile disease admitted in reference hospitals at the State of Pernambuco,
 - 752 Brazil. *Rev Soc Bras Med Trop* 2011; **44**: 735-9.

- Alia SN, Joseph N, Philip N, et al. Diagnostic accuracy of rapid diagnostic tests for the early detection
 of leptospirosis. *J Infect Public Health* 2019; 12: 263-9.
- 755 112. Barragan V, Chiriboga J, Miller E, et al. High *Leptospira* Diversity in Animals and Humans
- Complicates the Search for Common Reservoirs of Human Disease in Rural Ecuador. *PLoS Negl Trop Dis* 2016;
 10: e0004990.
- Biggs HM, Bui DM, Galloway RL, et al. Leptospirosis among hospitalized febrile patients in northern
 Tanzania. *Am J Trop Med Hyg* 2011; 85: 275-81.
- 760 114. Blacksell SD, Smythe L, Phetsouvanh R, et al. Limited diagnostic capacities of two commercial assays
- for the detection of *Leptospira* immunoglobulin M antibodies in Laos. *Clin Vaccine Immunol* 2006; 13: 1166-9.
 115. Boonsilp S, Thaipadungpanit J, Amornchai P, et al. Molecular detection and speciation of pathogenic
- 763 *Leptospira* spp. in blood from patients with culture-negative leptospirosis. *BMC Infect Dis* 2011; **11**: 338.
- 764 116. Chansamouth V, Thammasack S, Phetsouvanh R, et al. The Aetiologies and Impact of Fever in
- Pregnant Inpatients in Vientiane, Laos. *PLoS Negl Trop Dis* 2016; **10**: e0004577.
- Third The State of Chiriboga J, Barragan V, Arroyo G, et al. High Prevalence of Intermediate *Leptospira* spp. DNA in
 Febrile Humans from Urban and Rural Ecuador. *Emerg Infect Dis* 2015; 21: 2141-7.
- Total 118. Cohen AL, Dowell SF, Nisalak A, Mammen MP, Jr., Petkanchanapong W, Fisk TL. Rapid diagnostic tests for dengue and leptospirosis: antibody detection is insensitive at presentation. *Trop Med Int Health* 2007;
 12: 47-51.
- 771 119. Dassanayake DL, Wimalaratna H, Agampodi SB, Liyanapathirana VC, Piyarathna TA,
- Goonapienuwala BL. Evaluation of surveillance case definition in the diagnosis of leptospirosis, using the
 Microscopic Agglutination Test: a validation study. *BMC Infect Dis* 2009; 9: 48.
- Dittrich S, Boutthasavong L, Keokhamhoung D, et al. A Prospective Hospital Study to Evaluate the
 Diagnostic Accuracy of Rapid Diagnostic Tests for the Early Detection of Leptospirosis in Laos. *Am J Trop Med Hyg* 2018; 98: 1056-60.
- 777 121. Gasem MH, Wagenaar JF, Goris MG, et al. Murine typhus and leptospirosis as causes of acute 778 undifferentiated fever, Indonesia. *Emerg Infect Dis* 2009; **15**: 975-7.
- Guillebaud J, Bernardson B, Randriambolamanantsoa TH, et al. Study on causes of fever in primary
 healthcare center uncovers pathogens of public health concern in Madagascar. *PLoS Negl Trop Dis* 2018; 12:
 e0006642.
- 123. Hem S, Ly S, Votsi I, et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below
 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. *PLoS One* 2016; 11: e0151555.
- Hercik C, Cosmas L, Mogeni OD, et al. A Combined Syndromic Approach to Examine Viral, Bacterial,
 and Parasitic Agents among Febrile Patients: A Pilot Study in Kilombero, Tanzania. *Am J Trop Med Hyg* 2018;
 98: 625-32.
- Ismail TF, Wasfy MO, Abdul-Rahman B, et al. Retrospective serosurvey of leptospirosis among
 patients with acute febrile illness and hepatitis in Egypt. *Am J Trop Med Hyg* 2006; **75**: 1085-9.
- 126. Kendall EA, LaRocque RC, Bui DM, et al. Short Report: Leptospirosis as a Cause of Fever in Urban
 Bangladesh. Am J Trop Med Hyg 2010; 82: 1127-30.
- Koizumi N, Gamage CD, Muto M, et al. Serological and genetic analysis of leptospirosis in patients
 with acute febrile illness in Kandy, Sri Lanka. *Jpn J Infect Dis* 2009; 62: 474-5.
- 128. LaRocque RC, Breiman RF, Ari MD, et al. Leptospirosis during dengue outbreak, Bangladesh. *Emerg Infect Dis* 2005; 11: 766-9.
- Libraty DH, Myint KS, Murray CK, et al. A comparative study of leptospirosis and dengue in Thai
 children. *PLoS Negl Trop Dis* 2007; 1: e111.
- 130. Matthias MA, Ricaldi JN, Cespedes M, et al. Human leptospirosis caused by a new, antigenically
- unique Leptospira associated with a Rattus species reservoir in the Peruvian Amazon. PLoS Negl Trop Dis 2008;
 2: e213.
- Mayxay M, Castonguay-Vanier J, Chansamouth V, et al. Causes of non-malarial fever in Laos: a
 prospective study. *Lancet Glob Health* 2013; 1: e46-54.
- Maze MJ, Biggs HM, Rubach MP, et al. Comparison of the Estimated Incidence of Acute Leptospirosis
 in the Kilimanjaro Region of Tanzania between 2007-08 and 2012-14. 2016; 10: e0005165.
- 804 133. McGready R, Ashley EA, Wuthiekanun V, et al. Arthropod borne disease: the leading cause of fever in 805 pregnancy on the Thai-Burmese border. *PLoS Negl Trop Dis* 2010; **4**: e888.
- 806
 134. Mueller TC, Siv S, Khim N, et al. Acute undifferentiated febrile illness in rural Cambodia: a 3-year
 807 prospective observational study. *PLoS One* 2014; 9: e95868.
- 808 135. Murdoch DR, Woods CW, Zimmerman MD, et al. The etiology of febrile illness in adults presenting to 809 Patan hospital in Kathmandu, Nepal. *Am J Trop Med Hyg* 2004; **70**: 670-5.
- 810 136. Murray CK, Gray MR, Mende K, et al. Use of patient-specific Leptospira isolates in the diagnosis of
- 811 leptospirosis employing microscopic agglutination testing (MAT). Trans R Soc Trop Med Hyg 2011; 105: 209-
- 812 13.

- 813 Natarajaseenivasan K, Prabhu N, Selvanayaki K, Raja SS, Ratnam S. Human leptospirosis in Erode, 137.
- 814 South India: serology, isolation, and characterization of the isolates by randomly amplified polymorphic DNA 815 (RAPD) fingerprinting. Jpn J Infect Dis 2004; 57: 193-7.
- 816 138. Natarajaseenivasan K, Raja V, Narayanan R. Rapid diagnosis of leptospirosis in patients with different 817 clinical manifestations by 16S rRNA gene based nested PCR. Saudi J Biol Sci 2012; 19: 151-5.
- 818 139. Phimda K, Hoontrakul S, Suttinont C, et al. Doxvcycline versus azithromycin for treatment of 819 leptospirosis and scrub typhus. Antimicrob Agents Chemother 2007; 51: 3259-63.
- 820 140. Rafizah AA, Aziah BD, Azwany YN, et al. A hospital-based study on seroprevalence of leptospirosis 821 among febrile cases in northeastern Malaysia. Int J Infect Dis 2013; 17: e394-7.
- 822 Rao P, Sethi S, Sud A, Banga SS, Sharma M. Screening of patients with acute febrile illness for 141. 823 leptospirosis using clinical criteria and serology. Natl Med J India 2005; 18: 244-6.
- 824 142. Ravindar A, Shanmugam P. Co-infection of Dengue and Leptospirosis in Patients Presenting to a
- 825 Tertiary Care Hospital with Acute Febrile Illness: A Cross-sectional Study. J Clin Diagn Res 2018; 12: DC05-826 DC9.
- 827 143. Reller ME, Wunder EA, Jr., Miles JJ, et al. Unsuspected leptospirosis is a cause of acute febrile illness 828 in Nicaragua. PLoS Negl Trop Dis 2014; 8: e2941.
- 829 Ribeiro P, Bhatt N, Ali S, et al. Seroepidemiology of leptospirosis among febrile patients in a rapidly 144. 830 growing suburban slum and a flood-vulnerable rural district in Mozambique, 2012-2014: Implications for the 831 management of fever. Int J Infect Dis 2017; 64: 50-7.
- 832 145. Ricapa-Antay F, Diaz-Melon K, Silva-Caso W, et al. Molecular detection and clinical characteristics of 833 Bartonella bacilliformis, Leptospira spp., and Rickettsia spp. in the Southeastern Peruvian Amazon basin. BMC 834 Infect Dis 2018; 18: 618.
- 835 146. Rubbo PA, Soupe-Gilbert ME, Golongba DM, et al. Evidence of human leptospirosis cases in a cohort 836 of febrile patients in Bangui, Central African Republic: a retrospective study, 2012-2015. BMC Infect Dis 2018; 837 **18**: 376.
- 838 147. Sengupta M, Prabhakar AK, Satyendra S, et al. Utility of Loop-mediated Isothermal Amplification 839 Assay, Polymerase Chain Reaction, and ELISA for Diagnosis of Leptospirosis in South Indian Patients. J Glob
- 840 Infect Dis 2017; 9: 3-7.
- 841 148. Suttinont C, Losuwanaluk K, Niwatayakul K, et al. Causes of acute, undifferentiated, febrile illness in 842 rural Thailand: results of a prospective observational study. Ann Trop Med Parasit 2006; 100: 363-70.
- 843 149. Thipmontree W, Suputtamongkol Y, Tantibhedhyangkul W, Suttinont C, Wongswat E, Silpasakorn S.
- 844 Human leptospirosis trends: northeast Thailand, 2001-2012. Int J Environ Res Public Health 2014; 11: 8542-51.
- 845 Waggoner J, Brichard J, Mutuku F, et al. Malaria and Chikungunya Detected Using Molecular 150. 846 Diagnostics Among Febrile Kenyan Children. Open Forum Infect Dis 2017; 4: ofx110.
- 847 151. Wuthiekanun V, Chierakul W, Limmathurotsakul D, et al. Optimization of culture of Leptospira from 848 humans with leptospirosis. J Clin Microbiol 2007; 45: 1363-5.
- 849 152. Zida S, Kania D, Sotto A, et al. Leptospirosis as Cause of Febrile Icteric Illness, Burkina Faso. Emerg 850 Infect Dis 2018; 24: 1569-72.
- 851 153. El-Mahallawy H, Sidhom I, El-Din NHA, Zamzam M, El-Lamie MM. Clinical and microbiologic
- 852 determinants of serious bloodstream infections in Egyptian pediatric cancer patients: a one-year study. Int J 853 Infect Dis 2005; 9: 43-51.
- 854 154. Chadha MS, Comer JA, Lowe L, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India. 855 Emerg Infect Dis 2006; 12: 235-40.
- 856 Blacksell SD, Sharma NP, Phumratanaprapin W, et al. Serological and blood culture investigations of 155. 857
- Nepalese fever patients. Trans R Soc Trop Med Hyg 2007; 101: 686-90.
- 858 156. Blacksell SD, Jenjaroen K, Phetsouvanh R, et al. Accuracy of rapid IgM-based
- 859 immunochromatographic and immunoblot assays for diagnosis of acute scrub typhus and murine typhus 860 infections in Laos. Am J Trop Med Hyg 2010; 83: 365-9.
- 861 Blacksell SD, Tanganuchitcharnchai A, Nawtaisong P, et al. Diagnostic Accuracy of the InBios Scrub 157.
- 862 Typhus Detect Enzyme-Linked Immunoassay for the Detection of IgM Antibodies in Northern Thailand. Clin 863 Vaccine Immunol 2016; 23: 148-54.
- 864 158. Blacksell SD, Lim C, Tanganuchitcharnchai A, et al. Optimal Cutoff and Accuracy of an IgM Enzyme-865 Linked Immunosorbent Assay for Diagnosis of Acute Scrub Typhus in Northern Thailand: an Alternative
- 866 Reference Method to the IgM Immunofluorescence Assay. J Clin Microbiol 2016; 54: 1472-8.
- 867 Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical 159.
- 868 prediction of scrub typhus in a non-tropical endemic area. Am J Trop Med Hyg 2015; 92: 256-61.
- 869 160. Kingston HW, Hossain M, Leopold S, et al. Rickettsial Illnesses as Important Causes of Febrile Illness 870 in Chittagong, Bangladesh. Emerg Infect Dis 2018; 24.
- 871 Kocher C, Jiang J, Morrison AC, et al. Serologic Evidence of Scrub Typhus in the Peruvian Amazon. 161.
- 872 Emerg Infect Dis 2017; 23: 1389-91.

- Kumar V, Kumar V, Yadav AK, et al. Scrub Typhus Is an Under-recognized Cause of Acute Febrile
 Illness with Acute Kidney Injury in India. *PLoS Negl Trop Dis* 2014; 8.
- 163. Maude RR, de Jong HK, Wijedoru L, et al. The diagnostic accuracy of three rapid diagnostic tests for
 typhoid fever at Chittagong Medical College Hospital, Chittagong, Bangladesh. *Trop Med Int Health* 2015; 20:
 1376-84.
- 878 164. Paris DH, Blacksell SD, Nawtaisong P, et al. Diagnostic Accuracy of a Loop-Mediated Isothermal PCR
 879 Assay for Detection of Orientia tsutsugamushi during Acute Scrub Typhus Infection. *PLoS Negl Trop Dis* 2011;
 880 5.
- 165. Reller ME, Bodinayake C, Nagahawatte A, et al. Unsuspected rickettsioses among patients with acute
 febrile illness, Sri Lanka, 2007. *Emerg Infect Dis* 2012; 18: 825-9.
- 883 166. Saisongkorh W, Chenchittikul M, Silpapojakul K. Evaluation of nested PCR for the diagnosis of scrub 884 typhus among patients with acute pyrexia of unknown origin. *Trans R Soc Trop Med Hyg* 2004; **98**: 360-6.
- 885 167. Sonthayanon P, Chierakul W, Wuthiekanun V, et al. Rapid diagnosis of scrub typhus in rural Thailand using polymerase chain reaction. *Am J Trop Med Hyg* 2006; **75**: 1099-102.
- Srinivasan S, Menon T. Molecular detection of *Orientia tsutsugamushi* from suspected scrub typhus
 cases. *Indian J Pathol Microbiol* 2017; 60: 70-3.
- Thipmontree W, Tantibhedhyangkul W, Silpasakorn S, Wongsawat E, Waywa D, Suputtamongkol Y.
 Scrub Typhus in Northeastern Thailand: Eschar Distribution, Abnormal Electrocardiographic Findings, and
- 891 Predictors of Fatal Outcome. *Am J Trop Med Hyg* 2016; **95**: 769-73.
- Tshokey T, Stenos J, Durrheim DN, et al. Rickettsial Infections and Q Fever Amongst Febrile Patients
 in Bhutan. *Trop Med Infect Dis* 2018; 3.
- 894 171. Bengre ML, Prabhu MV, Arun S, Prasad K, Baht KG. Evaluation of the Multinational Association for
- Supportive Care in Cancer (MASCC) Score for Identifying Low Risk Febrile Neutropaenic Patients at a South
 Indian Tertiary Care Centre. *J Clin Diagn Res* 2012; 6: 839-43.
- 897 172. Bouchaib H, Eldin C, Laroche M, Raoult D, Parola P. Tick- and flea-borne rickettsioses in Tizi-Ouzou,
 898 Algeria: Implications for travel medicine. *Travel Med Infect Dis* 2018; 26: 51-7.
- Response 173. Chowdhury NF, Paul SK, Aung MS, et al. Nationwide prevalence of *Rickettsia felis* infections in patients with febrile illness in Bangladesh. *New Microbes New Infect* 2017; 19: 123-5.
- 901 174. dos Santos FC, do Nascimento EM, Katz G, et al. Brazilian spotted fever: real-time PCR for diagnosis
 902 of fatal cases. *Ticks Tick Borne Dis* 2012; 3: 312-4.
- 903 175. Eremeeva ME, Berganza E, Suarez G, et al. Investigation of an outbreak of rickettsial febrile illness in
 904 Guatemala, 2007. Int J Infect Dis 2013; 17: e304-11.
- 905 176. Gaowa, Wulantuya, Yin X, et al. Spotted Fever Group Rickettsiae in Inner Mongolia, China, 2015–
 906 2016. *Emerg Infect Dis* 2018; 24: 2105-7.
- 907 177. Hidalgo M, Montoya V, Martinez A, et al. Flea-borne rickettsioses in the north of Caldas province,
 908 Colombia. *Vector Borne Zoonotic Dis* 2013; 13: 289-94.
- William Kuloglu F, Rolain JM, Akata F, Eroglu C, Celik AD, Parola P. Mediterranean spotted fever in the
 Trakya region of Turkey. *Ticks Tick Borne Dis* 2012; **3**: 298-304.
- 911 179. Liu W, Li H, Lu QB, et al. Candidatus *Rickettsia tarasevichiae* Infection in Eastern Central China: A
 912 Case Series. *Ann Intern Med* 2016; 164: 641-8.
- 913 180. Maina AN, Knobel DL, Jiang J, et al. *Rickettsia felis* infection in febrile patients, western Kenya, 2007914 2010. *Emerg Infect Dis* 2012; 18: 328-31.
- 915 181. Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D. Tick-borne rickettsioses,
- 916 neglected emerging diseases in rural Senegal. *PLoS Negl Trop Dis* 2010; **4**.
- 917 182. Mediannikov O, Socolovschi C, Edouard S, et al. Common epidemiology of *Rickettsia felis* infection
 918 and malaria, Africa. *Emerg Infect Dis* 2013; 19: 1775-83.
- Mongkol N, Suputtamongkol Y, Taweethavonsawat P, Foongladda S. Molecular Evidence of *Rickettsia*in Human and Dog Blood in Bangkok. *Vector Borne Zoonotic Dis* 2018; 18: 297-302.
- 921 184. Mourembou G, Fenollar F, Socolovschi C, et al. Molecular Detection of Fastidious and Common
- Bacteria as well as *Plasmodium* spp. in Febrile and Afebrile Children in Franceville, Gabon. *Am J Trop Med Hyg* 2015; **92**: 926-32.
- 924 185. Mourembou G, Lekana-Douki JB, Mediannikov O, et al. Possible Role of *Rickettsia felis* in Acute
- 925 Febrile Illness among Children in Gabon. *Emerg Infect Dis* 2015; **21**: 1808-15.
- 186. Ndip LM, Fokam EB, Bouyer DH, et al. Detection of *Rickettsia africae* in patients and ticks along the coastal region of Cameroon. *Am J Trop Med Hyg* 2004; **71**: 363-6.
- 928 187. Prakash JA, Sohan Lal T, Rosemol V, et al. Molecular detection and analysis of spotted fever group
- *Rickettsia* in patients with fever and rash at a tertiary care centre in Tamil Nadu, India. *Pathog Glob Hith* 2012; **106**: 40-5.
- 188. Richards AL, Jiang J, Omulo S, et al. Human Infection with *Rickettsia felis*, Kenya. *Emerg Infect Dis*2010; 16: 1081-6.

- 933 189. Sothmann P, Keller C, Krumkamp R, et al. *Rickettsia felis* Infection in Febrile Children, Ghana. *Am J* 934 *Trop Med Hyg* 2017; 96: 783-5.
- Hidalgo M, Salguero E, de la Ossa A, et al. Short report: Murine typhus in Caldas, Colombia. Am J
 Trop Med Hyg 2008; 78: 321-2.
- 937 191. Pradhan R, Shrestha U, Gautam SC, et al. Bloodstream infection among children presenting to a general
 938 hospital outpatient clinic in urban Nepal. *PLoS One* 2012; 7: e47531.
- 939 192. Zimmerman MD, Murdoch DR, Rozmajzl PJ, et al. Murine typhus and febrile illness, Nepal. *Emerg* 940 *Infect Dis* 2008; 14: 1656-9.
- 941 193. Baudin M, Jumaa AM, Jomma HJE, et al. Association of Rift Valley fever virus infection with
- 942 miscarriage in Sudanese women: a cross-sectional study. Lancet Glob Health 2016; 4: e864-e71.
- 943 194. Sow A, Loucoubar C, Diallo D, et al. Concurrent malaria and arbovirus infections in Kedougou,
- 944 southeastern Senegal. *Malar J* 2016; **15**: 47.
- 945 195. Akinyemi KO, Bamiro BS, Coker AO. Salmonellosis in Lagos, Nigeria: incidence of *Plasmodium*
- *falciparum*-associated co-infection, patterns of antimicrobial resistance, and emergence of reduced susceptibility
 to fluoroquinolones. *J Hlth Popul Nutr* 2007; 25: 351-8.
- Akinyemi KO, Iwalokun BA, Alafe OO, Mudashiru SA, Fakorede C. bla CTX-M-I group extended
 spectrum beta lactamase-producing *Salmonella typhi* from hospitalized patients in Lagos, Nigeria. *Infect Drug Resist* 2015; 8: 99-106.
- 951 197. Al-Emran HM, Eibach D, Krumkamp R, et al. A Multicountry Molecular Analysis of *Salmonella*
- 952 *enterica* Serovar Typhi With Reduced Susceptibility to Ciprofloxacin in Sub-Saharan Africa. *Clin Infect Dis* 953 2016; **62 Suppl 1**: S42-6.
- Al-Emran HM, Krumkamp R, Dekker DM, et al. Validation and Identification of Invasive Salmonella
 Serotypes in Sub-Saharan Africa by Multiplex Polymerase Chain Reaction. Clin Infect Dis 2016; 62 Suppl 1:
- 956 S80-2.
- 957 199. Andualem G, Abebe T, Kebede N, Gebre-Selassie S, Mihret A, Alemayehu H. A comparative study of
 958 Widal test with blood culture in the diagnosis of typhoid fever in febrile patients. *BMC Res Notes* 2014; 7: 653.
- 200. Bello N, Kudu ATD, Adetokun AB, et al. Characterization and Antimicrobial Susceptibility Profile of
 Bacteraemia Causing Pathogens Isolated from Febrile Children with and without Sickle Cell Disease in Kano,
 Nigeria. *Mediterr J Hematol Infect Dis* 2018; 10: e2018016.
- 962 201. Biggs HM, Lester R, Nadjm B, et al. Invasive Salmonella infections in areas of high and low malaria
 963 transmission intensity in Tanzania. *Clin Infect Dis* 2014; **58**: 638-47.
- 202. Bilman FB, Cicek B, Gulesen R, Levent B. Epidemiological Analysis Using Pulsed-Field Gel
- Belectrophoresis of Salmonella enteritidis Outbreak in Factory Workers. Jundishapur J Microbiol 2017; 10:
 e14144.
- 967 203. Brooks WA, Hossain A, Goswami D, et al. Bacteremic typhoid fever in children in an urban slum,
 968 Bangladesh. *Emerg Infect Dis* 2005; 11: 326-9.
- 969 204. Brown B, Dada-Adegbola H, Trippe C, Olopade O. Prevalence and Etiology of Bacteremia in Febrile
- 970 Children with Sickle Cell Disease at a Nigeria Tertiary Hospital. *Mediterr J Hematol Infect Dis* 2017; 9: e2017039.
- 972 205. Crump JA, Ramadhani HO, Morrissey AB, et al. Invasive bacterial and fungal infections among
- hospitalized HIV-infected and HIV-uninfected adults and adolescents in northern Tanzania. *Clin Infect Dis*2011; **52**: 341-8.
- 975 206. Crump JA, Ramadhani HO, Morrissey AB, et al. Invasive bacterial and fungal infections among
- hospitalized HIV-infected and HIV-uninfected children and infants in northern Tanzania. *Trop Med Int Health* 2011; 16: 830-7.
- 207. D'Acremont V, Kilowoko M, Kyungu E, et al. Beyond malaria--causes of fever in outpatient Tanzanian
 children. *N Engl J Med* 2014; **370**: 809-17.
- 980 208. Davies DH, Jain A, Nakajima R, et al. Serodiagnosis of Acute Typhoid Fever in Nigerian Pediatric
- Cases by Detection of Serum IgA and IgG against Hemolysin E and Lipopolysaccharide. *Am J Trop Med Hyg* 2016; 95: 431-9.
- 209. Dong B, Liang D, Lin M, et al. Bacterial etiologies of five core syndromes: laboratory-based syndromic
 surveillance conducted in Guangxi, China. *PLoS One* 2014; 9: e110876.
- 985 210. Eibach D, Belmar Campos C, Krumkamp R, et al. Extended spectrum beta-lactamase producing
- 986 Enterobacteriaceae causing bloodstream infections in rural Ghana, 2007-2012. *Int J Med Microbiol* 2016; 306: 249-54.
- 988 211. Gordon MA, Kankwatira AM, Mwafulirwa G, et al. Invasive non-typhoid salmonellae establish
- 989 systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. *Clin Infect Dis* 2010;
 900 50: 953-62.

991 212. Saha S, Islam M, Uddin MJ, et al. Integration of enteric fever surveillance into the WHO-coordinated

992 Invasive Bacterial-Vaccine Preventable Diseases (IB-VPD) platform: A low cost approach to track an

increasingly important disease. *PLoS Negl Trop Dis* 2017; **11**: e0005999.

213. Jeon HJ, Pak GD, Im J, et al. Determining the Best Immunization Strategy for Protecting African
Children Against Invasive Salmonella Disease. *Clin Infect Dis* 2018; 67: 1824-30.

996 214. Kibuuka A, Byakika-Kibwika P, Achan J, et al. Bacteremia Among Febrile Ugandan Children Treated 997 with Antimalarials Despite a Negative Malaria Test. *Am J Trop Med Hyg* 2015; **93**: 276-80.

Seasonal malaria transmission area in Burkina Faso. *Infect Dis Poverty* 2018; 7: 60.

Ley B, Mtove G, Thriemer K, et al. Evaluation of the Widal tube agglutination test for the diagnosis of
 typhoid fever among children admitted to a rural hospital in Tanzania and a comparison with previous studies.
 BMC Infect Dis 2010; 10: 180.

1003 217. Mahende C, Ngasala B, Lusingu J, et al. Aetiology of Acute Febrile Episodes in Children Attending
 1004 Korogwe District Hospital in North-Eastern Tanzania. *Plos One* 2014; 9.

1005 218. Marks F, von Kalckreuth V, Aaby P, et al. Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. *Lancet Glob Health* 2017; **5**: e310-e23.

- 1007 219. Meremo A, Mshana SE, Kidenya BR, Kabangila R, Peck R, Kataraihya JB. High prevalence of Nontyphoid salmonella bacteraemia among febrile HIV adult patients admitted at a tertiary Hospital, North-Western
 Tanzania. *Int Arch Med* 2012; 5: 28.
- 1010 220. Moon TD, Silva WP, Buene M, et al. Bacteremia as a cause of fever in ambulatory, HIV-infected 1011 Mozambican adults: results and policy implications from a prospective observational study. *PLoS One* 2013; **8**:
- 1012 e83591.
- 1013 221. Mourembou G, Nzondo SM, Ndjoyi-Mbiguino A, et al. Co-circulation of Plasmodium and Bacterial 1014 DNAs in Blood of Febrile and Afebrile Children from Urban and Rural Areas in Gabon. *Am J Trop Med Hyg*
- 1014 DIVAS III DIOOD OF FC
- 1016 222. Mtove G, Amos B, von Seidlein L, et al. Invasive salmonellosis among children admitted to a rural 1017 Tanzanian hospital and a comparison with previous studies. *PLoS One* 2010; **5**: e9244.

1018 223. Mtove G, Amos B, Nadjm B, et al. Decreasing incidence of severe malaria and community-acquired

- bacteraemia among hospitalized children in Muheza, north-eastern Tanzania, 2006-2010. *Malaria J* 2011; 10.
 224. Mtove G, Hendriksen IC, Amos B, et al. Treatment guided by rapid diagnostic tests for malaria in
- 1021 Tanzanian children: safety and alternative bacterial diagnoses. *Malar J* 2011; **10**: 290.
- 1022 225. Nadjm B, Amos B, Mtove G, et al. WHO guidelines for antimicrobial treatment in children admitted to
- hospital in an area of intense *Plasmodium falciparum* transmission: prospective study. *BMJ* 2010; **340**: c1350.

1024 226. Nadjm B, Mtove G, Amos B, et al. Severe febrile illness in adult hospital admissions in Tanzania: a prospective study in an area of high malaria transmission. *Trans R Soc Trop Med Hyg* 2012; **106**: 688-95.

- prospective study in an area of high malaria transmission. *Trans R Soc Trop Med Hyg* 2012; 106: 688-95.
 227. Ochaya O, Hume H, Bugeza S, et al. ACS in children with sickle cell anaemia in Uganda: prevalence, presentation and aetiology. *Br J Haematol* 2018; 183: 289-97.
- 1028 228. Onchiri FM, Pavlinac PB, Singa BO, et al. Low Bacteremia Prevalence Among Febrile Children in
 1029 Areas of Differing Malaria Transmission in Rural Kenya: A Cross-Sectional Study. *J Pediatric Infect Dis Soc*1030 2016; 5: 385-94.
- 1031 229. Onyango D, Machioni F, Kakai R, Waindi EN. Multidrug resistance of *Salmonella enterica* serovars
 1032 Typhi and Typhimurium isolated from clinical samples at two rural hospitals in Western Kenya. *J Infect Dev* 1033 *Ctries* 2008; 2: 106-11.
- 1034 230. Onyango MD, Ghebremedhin B, Waindi EN, et al. Phenotypic and genotypic analysis of clinical isolates *Salmonella* serovar Typhimurium in western Kenya. *J Infect Dev Ctries* 2009; **3**: 685-94.
- Park SE, Pak GD, Aaby P, et al. The Relationship Between Invasive Nontyphoidal *Salmonella* Disease,
 Other Bacterial Bloodstream Infections, and Malaria in Sub-Saharan Africa. *Clin Infect Dis* 2016; 62 Suppl 1:
- 1038 S23-31.
- 1039 232. Peters RPH, Zijlstra EE, Schijffelen MJ, et al. A prospective study of bloodstream infections as cause of fever in Malawi: clinical predictors and implications for management. *Trop Med Int Health* 2004; **9**: 928-34.
- 1040 rever in Malawi. chincal predictors and implications for management. *Trop Med Int Teatin* 2004, 9: 928-54. 1041 233. Preziosi M, Zimba TF, Lee K, et al. A prospective observational study of bacteraemia in adults admitted
- 1042 to an urban Mozambican hospital. *S Afr Med J* 2015; **105**: 370-4.
- 1043 234. Sothmann P, Krumkamp R, Kreuels B, et al. Urbanicity and Paediatric Bacteraemia in Ghana-A Case1044 Control Study within a Rural-Urban Transition Zone. *PLoS One* 2015; 10: e0139433.
- 1045 235. Tezcan G, Kupesiz A, Ozturk F, et al. Episodes of fever and neutropenia in children with cancer in a tertiary care medical center in Turkey. *Pediatr Hematol Oncol* 2006; **23**: 217-29.
- 1047 236. Wiersinga WJ, Birnie E, Weehuizen TA, et al. Clinical, environmental, and serologic surveillance
- 1048 studies of melioidosis in Gabon, 2012-2013. Emerg Infect Dis 2015; 21: 40-7.
- 1049 237. Degarege A, Legesse M, Medhin G, Animut A, Erko B. Malaria and related outcomes in patients with 1050 intestinal helminths: a cross-sectional study. *BMC Infect Dis* 2012; **12**: 291.

- 1051 238. Hinjoy S, Wacharapluesadee S, Iamsirithawron S, Smithsuwan P, Padungtod P. Zoonotic and vector
- 1052 borne agents causing disease in adult patients hospitalized due to fever of unknown origin in Thailand. Asian 1053 Pac J Trop Dis 2017; 7: 577-81.
- 1054 239. Adurthi S, Sahoo T, Chakka K, et al. Acute toxoplasmosis in nonstem cell transplant patients with
- 1055 haematological malignancies: a study from a regional cancer institute in South India. *Hematological Oncology* 1056 2008; 26: 229-33.
- 1057 240. Forshey BM, Guevara C, Laguna-Torres VA, et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. PLoS Negl Trop Dis 2010; 4: e787. 1058
- 1059 241. Kocher C, Morrison AC, Leguia M, et al. Rickettsial Disease in the Peruvian Amazon Basin. PLoS Negl 1060 Trop Dis 2016; 10.
- 1061 242. Morrison AC, Forshey BM, Notyce D, et al. Venezuelan equine encephalitis virus in Iquitos, Peru: 1062
- urban transmission of a sylvatic strain. PLoS Negl Trop Dis 2008; 2: e349. 1063 Chinikar S, Javadi A, Ataei B, et al. Detection of West Nile virus genome and specific antibodies in 243. 1064 Iranian encephalitis patients. Epidemiol Infect 2012; 140: 1525-9.
- 1065 Elyan DS, Moustafa L, Noormal B, et al. Serological evidence of Flaviviruses infection among acute 244. 1066 febrile illness patients in Afghanistan. J Infect Dev Countr 2014; 8: 1176-80.
- 1067 Kumar JS, Saxena D, Parida M. Development and comparative evaluation of SYBR Green I-based one-245. 1068
- step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients. Mol Cell 1069 Probes 2014; 28: 221-7.
- 1070 246. Rutvisuttinunt W, Chinnawirotpisan P, Klungthong C, et al. Evidence of West Nile virus infection in 1071 Nepal. BMC Infect Dis 2014; 14: 606.
- 1072 247. Tigoi C, Lwande O, Orindi B, Irura Z, Ongus J, Sang R. Seroepidemiology of Selected Arboviruses in
- 1073 Febrile Patients Visiting Selected Health Facilities in the Lake/River Basin Areas of Lake Baringo, Lake 1074 Naivasha, and Tana River, Kenya. Vector Borne Zoonotic Dis 2015; 15: 124-32.
- 1075
- Williams SH, Cordey S, Bhuva N, et al. Investigation of the Plasma Virome from Cases of Unexplained 248. 1076 Febrile Illness in Tanzania from 2013 to 2014: a Comparative Analysis between Unbiased and VirCapSeq-
- 1077 VERT High-Throughput Sequencing Approaches. mSphere 2018; 3.
- 1078 Sinyange N, Kumar R, Inambao A, et al. Outbreak of Plague in a High Malaria Endemic Region -249.
- 1079 Nyimba District, Zambia, March-May 2015. Mmwr-Morbid Mortal W 2016; 65: 807-11.
- 1080 1081

Manuscript reference number: THELANCETID-D-18-01101 Title: Zoonotic causes of febrile illness in malaria endemic countries: a systematic review

Dear editor

We would like to thank the three anonymous reviewers and the editor for their comments on this manuscript, and the opportunity to resubmit this revision of our paper. We have worked through and documented our point-by-point responses (shown in italics) to all of the comments made and these are detailed in the text below. The principal update made is to rerun the searches at the start of 2019 to bring this review fully up to date. We hope that this update and our responses to the other points raised will provide all of the information needed for resubmission.

Best wishes Jo Halliday

Notes from the editor (general editorial points follow the reviewers' comments):

* When revising your manuscript in response to the comments below, please ensure that you do not exceed the limits of 4500 words and 150 references (for detailed guidance see our instructions for authors<u>https://www.thelancet.com/pb/assets/raw/Lancet/authors/tlid-info-for-authors.pdf</u>)

In correspondence with the deputy editor Dr Sekkides on 25 March 2019 it was advised that we include details of the references that are only cited in the appendix table (that provides details of all articles included in the review), in the appendix. We count the article length as 4420 words and 47 references in the main file.

* It is essential that you bring your search up to date

We have updated the review to include all references documented before 03 January 2019 when the update searches for this resubmission were run. This date is included in the revised submission (line 106)

* Owing to the limited space available we only allow seven non-text items. I suggest that you move tables 1 and 3 to your appendix and any other two tables, figures, or both (maybe figures 3 and 4). Given table 1 is largely the same as the one in your appendix, retain the version you had in the manuscript, as this contains more information

We have updated the paper and retained only 7 non-text items in the main text file. These are included as follows:

1 – Table 1 - Pathogens included in the study – this combines the content from the main file and appendix, and the redundant version in the appendix has been dropped
2 – Table 2 – Inclusion and exclusion criteria – retained in the main text
(NB – to ensure that the references included in the figures compile into the reference list in the appropriate order we have retained the tables in the main text file).

3 - Figure 1: Flow diagram of records and articles assessed for the review

4 - Figure 2: Map illustrating the malaria-endemic countries included in the study and number of articles contributing data for each country.

5 - Figure 3: Barchart showing number of articles where each pathogen was looked for diagnosed and had data extracted

6 - Figure 4: Proportion of fevers attributed to each zoonosis.

7 - Figure 5: Venn diagram illustrating the associations between febrile population clinical presentation and pathogens identified.

The remaining tables and figures are now either omitted from the revision or included in the in appendix file.

The table giving details of all of the studies included in the review is now included (with its own standalone bibliography in the appendix – table S6). The appendix file also includes a link to a DOI where an excel format version of the table can be accessed (this will be activated as/when the paper is ready for publication)

* A paper of this type does not require a research in context panel. Move this into the main text or omit entirely if this information is already presented *This section has been removed from the revised submission*

* Please submit ICMJE forms completed by all authors(<u>https://www.thelancet.com/pb/assets/raw/Lancet/authors/icmje-coi-form.zip</u>) *We have uploaded ICMJE forms for all authors*

Reviewers' comments:

Reviewer #1:

1. The authors mention co-endemicity but there is no mention of co-infection and that the possibility of co-infection with malaria and another pathogen is real and what the probability of this could be

We have updated the manuscript to include data on the number of studies that reported exclusion of some pathogens/syndromes and malaria specifically. We have also added some additional results on the number of zoonotic pathogens that the studies looked for, diagnosed and contributed data for. Lines 396-300 now read:

"Of the 244 studies, twelve (4.9%) described a demographically restricted population, 55 (22.5%) reported some exclusions from the population, and 32 (13.1%) mentioned exclusion of malaria-infected individuals specifically (appendix table S6). Of the 244 studies, 73 (29.9%) reported looking for more than one zoonosis, 43 (17.6%) diagnosing more than one zoonosis and 37 (15.2%) contributing data on more than one zoonosis."

We have also added content on this point to the discussion (lines 432-435), which now reads:

"The design of this review did not allow explicit investigation of co-infections, either of zoonoses with malaria or of multiple zoonoses. Co-infections are likely to be an important factor underlying both the distribution and prevalence of some zoonotic pathogens, including for example nontyphoidal Salmonella serovars.[1]

2. This paper describes how in many malaria endemic settings; differential diagnosis of zoonotic pathogens is under-recognized/diagnosed. It is a shame that such a piece of in depth research did not include other languages besides English e.g. Russia. When one looks at the map of distribution it is also clear that there is research bias for examples with countries that have many research projects like Tanzania featuring high. There is also no real discussion about zoonoses often not being a blanket problem but a problem in high risk areas/ populations. This would enhance the paper.

With the exception of the franco-phone in West Africa, for most malariaendemic countries, English is the primary language for biomedical science. However, we do agree with the limitations identified by the reviewer here and have addressed some of these points in the discussion content and limitations paragraph specifically as follows:

Lines 404:407

"The restriction of this review to English language texts will have reduced the probability that studies from French and Spanish speaking countries were included and may partially account for some gaps, such as the 23 countries in Africa and 15 in the Americas for which no eligible studies were identified."

We have added a comment in the discussion to clarify the point about the dominance of a small number of countries in the data set (lines 337-345), that read:

"The geographic variation in the distribution of studies by country (figure 2) and region (appendix table S7, figure S2) is likely to be strongly influenced by variation in research and publication effort. There is noticeable geographic segregation for some zoonoses, with NTS and SFGR reported more frequently in Africa, and Leptospira spp., Orientia tsutsugamushi, and typhus-group rickettsioses (TGR) reported more frequently in South-East Asia and Western Pacific regions (appendix figure S2). For viruses, Lassa virus was reported only in Africa and JEV predominantly in South-East Asia. The distribution of studies cannot be interpreted as an accurate reflection of the underlying distribution of zoonotic pathogens, their prevalence or clinical importance.."

We have also added more detail to the flowchart (Figure 1) to clearly show the number of abstracts and full texts excluded on the basis of language in the figure (n=48 of 13,321 records) and we give the breakdown of articles by language excluded in the figure caption. To address the comment about zoonoses not being a blanket problem we have added the following content in the discussion (lines 396-400):

"Within populations at risk, it is important that aetiologic studies are followed by epidemiologic risk factor studies to determine whether certain sub-groups are at higher risk for specific zoonotic diseases. Robust febrile illness surveillance systems help inform local epidemiology and febrile illness management, and are also essential for detection of disease outbreaks.[2]."

3. Results highlight (line 353...) It is not about patient awareness only and about early seeking and diagnosis but also about awareness in populations at risk (occupations, communities, geographical high risk areas etc.), behavior change, prevention in Animals and relation to WASH.. This could be addressed a little in discussion.

We have address this point in two locations.

Lines 347-349 have been updated and these now read:

"Once pathogens are identified in any location there will likely be increased clinical, patient, and community awareness of those pathogens, as well as improved diagnostic capacity to detect them"

Later in the discussion we have update content on actions that can be taken to tackle and reduced the burden of zoonotic diseases. Lines 460-466 now read:

"One Health efforts to share data and knowledge between animal and human health sectors could help raise clinician awareness of locally relevant zoonoses, inform history taking, and guide diagnostic and management decision making. Control of disease in animal populations and prevention of transmission from animals to humans are likely to be the most effective ways to reduce human disease risk with many zoonoses, necessitating active engagement with populations at risk to develop sustainable disease control interventions."

4. In discussion: POC test are expensive and scarce, these should include pathogen panels in the future. There is a need for Target product profiles to guide diagnostic developers. *We agree that accurate POC tests are scarce, and that etiologic research can and should inform diagnostic developers. Accordingly we have added to the (lines 454-458):*

"Continued efforts are needed to develop multi-pathogen diagnostics, ideally with formats appropriate for point of care use. To avoid perpetuation of self-fulfilling prophesies that can arise when only pathogens tested for (and detected) are assumed to be present, the development and evaluation of such diagnostics should be informed by data describing the pathogens present in specific settings and also the wider context."

5. In discussion some space should be given to the argument that strong systems detecting febrile illness could bolster detection of epidemic of unknown origin or other causes. We have updated the discussion to include a point addressing this comment. Lines 396 to 400 now read:

"Within populations at risk, it is important that aetiologic studies are followed by epidemiologic risk factor studies to determine whether certain sub-groups are at higher risk for specific zoonotic diseases. Robust febrile illness surveillance systems help inform local epidemiology and febrile illness management, and are also essential for detection of disease outbreaks.[2]."

6. The last search was conducted in Aug 2016, 2 years ago, in the meantime there are more publications that would potentially reinforce the strength of the paper. This should be assessed by authors to identify whether worth updating the study.

We have updated the review to include all references documented before 03 January 2019 when the update searches for this resubmission were run.

Some text editing may improve readibility on phrase : 190-2, 266-8, 288, etc

We have updated the text in these identified locations as follows: 190-192 (now lines 202-205) now reads:

"To extract data on zoonotic pathogens, every article was classified to record if the study reported looking for or diagnosing one or more febrile individuals with any of the zoonotic pathogens included in the study reference list (table 1), irrespective of the diagnostics used"

266-268 (now lines 302-306) now reads:

"Among the 75 differentiated populations, 36 (48.0%) had specific febrile aetiologies suspected, 17 (22.7%) were classified as febrile neurological, eight (10.7%) as comorbid populations, eight (10.7%) as febrile haemorrhagic, five (6.7%) as febrile gastrointestinal and one (1.3%) as febrile respiratory"

288-289 (now lines 285-286) now reads: "The proportion of fevers attributed to each pathogen reported ranged from <1.0% to 95.0% (figure 4)"

Reviewer #3: This is a high quality systematic review on globally important clinical problem: In malaria-endemic countries, febrile patients receive frequently empiric-malaria treatment or empiric antibiotics -mostly beta-lactams- against typical bacterial pathogens. Both are usually not active against many zoonosis (e.g. coxiella, brucella etc) - resulting in a high proportion in inadequate empiric treatment in regions where zoonoses are frequent. This article summaries the augilable avidence in a year structured, commerchensive and

This article summaries the available evidence in a very structured, comprehensive and systematic way. These data will be extremely helpful to design e.g. molecular POCT panels for certain regions. I am very enthusiastic about the research question and the approach, and I was indeed looking for an article like this but did not found it yet. There are only minor issues:

1. Table 3: please add the used diagnostics approaches and the enrolled syndromes (gastrointestinal, neurological et.c) (you can use the coding from the inclusion criteria)
We have added information on the febrile population classification and diagnostic tests used to the summary table which is now Table S6 in the appendix material. The bias coding of each population has also been included in the update.

In addition, we will make a search and sortable excel copy of the full dataset accessible via a DOI (included in the appendix file) at Glasgow University that can be linked to the publication and made public on acceptance.

2. Sort table 3 by pathogen or provide an interactive table online that allows the reader to sort by region, pathogen, syndrome, year etc.

The Table S6 in the appendix material is now sorted by pathogen (then Author last name). In addition, we will make a search and sortable excel copy of the full dataset accessible.

3. Please mention, how many papers you omitted because of language reasons - this may be critical, since Spanish and French is frequently the main language in many of the addressed countries.

Two abstracts and 46 full texts were excluded on the basis of language. These numbers are now clearly shown in figure 1.

4. How many articles do you omit because no full text was available? *Twenty-six articles were omitted because pdfs could not be obtained through the searches and library systems searched.*

To address these two points, we have updated figure 1 to clearly show the number of abstracts and full text excluded on the grounds of language and PDF availability. The breakdown of number of excluded references written in different languages is given in the caption for the figure.

5. Why did you stop you research in 2016? This is 2 years ago? We have updated the review to include all references documented before 03 January 2019 when the update searches for this resubmission were run.

Reviewer #5: Overview and general recommendation:

The present study makes a valuable contribution to the knowledge about the main zoonoses that may be explaining the causes of febrile syndromes in non-malarial patients from endemic areas for several infectious diseases. Likewise, the importance of overcoming the challenge of malaria overdiagnosis in febrile patients is highlighted, as documenting the presence of other etiological agents leads to a targeted treatment preventing complications and deaths. Similarly, the contribution of elements for the construction of diagnostic and treatment algorithms for febrile syndromes would reduce the burden of infant mortality in these endemic areas for malaria. I also emphasize the good writing, the scientific rigor and the proper use of the bibliographical references, nevertheless, some suggestions are made on some aspects of the manuscript.

Minor comments:

Abstract

Is complete; It has an introduction, objectives, methods, results and conclusions.

Introduction

It is well elaborated, it is pertinent, accurate and well documented bibliographically.

Methodology Results and Discussion

The study is well planned as a systematic review, very detailed in terms of trying to capture all peer-reviewed articles, written in English and visible in the databases that they consulted. However, there are some observations related to the following aspects:

I suggest a better clarification of how they analyzed the risks of biases, because what's reported (lines: 211-214) is not systematic in this.

We have substantially updated the content on bias assessment in the manuscript. This is done in a revised section now titled "Data extraction and bias assessment" (Pg 8), with specific additional content on the methods used in lines 216-236. This content reads:

"The principal source of potential bias affecting the interpretation of the findings of this study is the lack of standardization of the febrile populations included in different studies. Criteria were defined to classify potential bias in study representativeness and prevalence estimate precision (appendix table S5).[3-5] The representativeness bias criterion was designed to classify the representativeness of the study population, relative to the general population where the study was conducted. This was based on the description of the febrile population, the restriction (if any) of the study sample to specific clinical or demographic sub-populations and the reporting of disease outbreaks at the time of data collection. Each population was classified as follows: i) populations classified as undifferentiated febrile with no demographic restriction and no clinical aetiologies excluded were classified as low risk; *ii)* populations classified as undifferentiated febrile with demographic restriction and/or reporting exclusion of specific aetiologies or syndromes were classified as medium risk; iii) differentiated febrile populations and those from studies reporting disease outbreaks at the time of data collection were classified as high risk. The second, outcome-level, bias criterion was designed to classify risk of bias in the estimated precision of the proportion of fevers attributed to each pathogen. Thresholds used for this criterion are the sample sizes needed to estimate proportions of 50% and 10% with 95% confidence and 0.05 precision respectively, assuming an infinite population size. Each population was classified as follows: i) proportion estimates based on a sample size of greater than or equal to 385 were classified as low risk; *ii)* proportion estimates based on a sample size of greater than 385 but less than 139 were classified as medium risk; iii) proportion estimates based on a sample size of less than 139 were classified as high risk."

We have revised the lines referred to here to retain the point made but clearly distinguish this from more formal bias assessment steps. This content is now included in lines 235-243 which now read:

"Additional potential sources of bias included variation in the pathogens tested for, and variation in the diagnostic approaches applied. For included studies, data on the pathogens tested for (with any diagnostic approach) were summarized alongside pathogens for which diagnostic test criteria were met to qualitatively evaluate the biases introduced by only extracting data on pathogens diagnosed using methods meeting study inclusion criteria."

The results of this bias coding are summarised in the results section (lines 286-288 and 307-309). The bias coding (representativeness and precision) of all studies and prevalence estimates are shown in appendix table S6. The representativeness bias coding of all prevalence estimates obtained from extracted data is shown in the revision of figure 4 and interpretation of the influence of these biases upon the key study findings is given in the discussion in lines 416 to 426.

I suggest to detail more accurately the risk assessment of bias in the individual studies; and to deepen the explanation of Figure 7 considering that and the characteristics of each study, which is currently very focused on the bibliometric analysis.

We have revised and updated Figure 7 (now Figure 4) to include representation of the representativeness bias assessment for each data point. The bias coding for all study populations included in the review are also show in the appendix Table S6 and these data are summarised in the results section (lines 286-288 and 307-309) and discussion sections (lines 416 to 426).

There is a bias in the selection of studies for restricting the language, which is enunciated by the authors.

There is a good bibliometric analysis (analysis of the publications) of Table 4 and of Figures 2, 3, 4 and 5, which is important to understand the dynamics of publication in an area. However, it would also be important to inform a little more about the occurrence or distribution of the causes of febrile illness. This way, it wouldn't be interpreted as a selection bias due to language restriction.

Due to limitations on the number of tables and figures that can be included in the main manuscript file (7 in total) Table 4 (now Table S7 in the appendix) and Figure 2 (now Figure S1 in the appendix) have been moved to the appendix content.

Due to the biases inherent in this dataset we are reluctant to over-interpret these data and feel that graphical representation of the data extracted in these figures and discussion of these patterns in the text is appropriate. In the discussion text we do refer to the geographical variation in number of studies on different pathogens (lines 337-345):

"The geographic variation in the distribution of studies by country (figure 2) and region (appendix table S7, figure S2) is likely to be strongly influenced by variation in research and publication effort. There is noticeable geographic segregation for some zoonoses, with NTS and SFGR reported more frequently in Africa, and Leptospira spp., Orientia tsutsugamushi, and typhus-group rickettsioses (TGR) reported more frequently in South-East Asia and Western Pacific regions (appendix figure S2). For viruses, Lassa virus was reported only in Africa and JEV predominantly in South-East Asia. The distribution of studies cannot be interpreted as an accurate reflection of the underlying distribution of zoonotic pathogens, their prevalence or clinical importance."

We hope that the update of figure 4 to include separate panels for different WHO regions and provision of the study dataset in excel format will enable further investigation of these patterns by readers interested in specific regions.

The mean and median of the proportions reported in the included studies could make some untrained readers think that this is a measure of synthesis.

We have removed this quantitative summary of the proportion data from the results section (lines 285-286) which now includes only the description of the range and reads: "The proportion of fevers attributed to each pathogen reported ranged from <1.0% to 95.0% (figure 4)."

In addition, we have included content in the discussion (lines 416-422) to highlight the caution needed in interpreting these data 'quantitatively' as follows:

"The bias assessments for study representativeness and precision in the estimates of proportion of fevers attributable to a given pathogen both reveal that the majority of data points had medium or high risk of one or both types of bias. This emphasizes the need for cautious and essentially non-quantitative interpretation of the data extracted from these studies. Many studies with risk of precision bias due to smaller sample size tended to report the highest prevalences of disease attribution to a given pathogen (figure 5); and, interestingly, these studies were often also classified as high risk for representativeness bias."

The results are consistent with the objectives of the proposal and they explain the frequency of 29 zoonoses, prioritized according to the review of articles that met selection criteria. The discussion is well posed, and it reveals the diagnostic difficulty for some pathologies such as leptospirosis and the diagnostic limitations within the scope of the first levels of care. The limitations of the study are adequately described. A complete review of the selected articles was made and fidelity was verified with the definition of infection by zoonotic pathogens.

Conclusion

It is consistent with the purpose of the study.

References, Tables and figures

There is a good handling of the references; All references are cited within the manuscript and are relevant to support the different statements, purposes or citations. Regarding the figures, some data on hemorrhagic fevers and some numbers that should coincide with the text of the manuscript should be unified.

Apologies for these errors in the previous figure and text versions – see below for our responses to each specific point identified

Page 3, row 68

...human pathogens cause zoonoses.... They are not zoonoses We have updated this so that the revised content (lines 65-66) now reads: "Fever is one of the most common reasons for healthcare seeking globally and the majority of human pathogens are zoonotic"

Page 3, row 82 Fever is not a syndrome, but a symptom We have updated this so that the revised content (line 78) now reads: "Fever is one of the most common symptoms prompting healthcare seeking globally [6-8]."

Page 5, row 256

These 29 pathogens as they state are not in figures 5 and 7. Apologies for these errors in the previous figure and text versions – we have updated figures 5 and 7 (now Figure S2 and Figure 4) to resolve these inconsistencies. Figure 3 includes all of the named pathogens looked for (n=40), diagnosed (n=31) and for which data were extracted (n=30). This is now clarified in the update legend for the figure:

"Figure 3: Barchart showing the number of articles that looked for, reported diagnosis of and contributed data for each of 40, 31 and 30 zoonoses respectively. These data were tabulated for all zoonoses (n=40) and articles included in the review (n=244). Bar colour indicates pathogen type and shading differentiates studies that i) contribute data meeting study diagnostic criteria (left hand bar sections with darkest shading, n=30 pathogens indicated by *), ii) report diagnosis with approaches that do not meet study diagnostic criteria (central bar sections with lighter shading, n=31 pathogens that comprised the 30 with extracted data and Escherichia coli), iii) report looking for but not diagnosing a zoonosis (right hand bar section with lightest shading, n=40 pathogens, also including Burkholderia spp. Tick borne encephalitis virus, Marburg virus, Rabies virus, Newcastle Disease virus, Mycobacterium bovis, Francisella tularensis, Ebola virus and Cryptosporidium parvum). "

Figure S2 includes data for the n=30 pathogens with extracted data. This is now updated in the figure legend which reads:

"Figure S2: Barcharts showing number of articles from each global region contributing data for each of 30 zoonoses."

Plot panels indicate the WHO defined global region and bar colour indicates type of pathogen."

At least the 3 protozoa mentioned in this page are not contemplated in the figures mentioned, because only Leishmaniasis and Toxoplasmosis but not Cryptosporidium parvum that is contemplated within the 36 pathogens of figure 4.

This query arises from ambiguity between the list of pathogens summarised at different points. The figure 4 referred to is now Figure 3 in the revision and this includes all 40 pathogens looked for. The summary of the number of pathogens that are bacteria, viruses, protozoa and helminths refers to the subset of 30 pathogens for which data were extracted.

We hope that changes made to the legends of the relevant figures and the results text (see below) address and resolve this source of confusion:

The relevant part of the results section has been reordered, with additional references to figures – lines 274-281:

"The 244 articles included for data extraction reported looking for and diagnosing 40 and 31 zoonoses, respectively, in these populations (figure 3). The number of included zoonoses was reduced to 30 after the criteria for diagnostic testing approach were applied. The 244 articles yielded data that met diagnostic test criteria for 30 zoonoses that included 17 bacterial pathogens (56.7%), nine viruses (30.0%), three protozoa (10.0%), and one helminth (3.3%). Leptospira spp., nontyphoidal Salmonella serovars (NTS) and rickettsioses were the most frequently reported bacteria, while Japanese encephalitis virus (JEV), Hantavirus, and West Nile virus (WNV) dominated among reported viruses (figures 3, 4)."

Page 5, row 256

In figure 4 the authors state 36 pathogens but not 29. In figures 5 and 7, 29 pathogens are mentioned.

See explanation for related query above.

Page 6, row 271

In Figure 6, 6 pathogens are not listed, but 5 considering Rickettsia (SFGR) and Rickettsia (TGR) as separate zoonoses; and 4 pathogens if they include both rickettsioses as a single zoonosis, as stated in the description of figure 6 (page 48).

Apologies for the errors in the previous version of this figure. In the revised version (Figure 5), the distinction between Rickettsia (SFGR), Rickettsia (TGR) and Rickettsia spp. is made here as elsewhere in the text, with all three now included in the figure labelling. The explanation of these grouping is also now included in a footnote to Table 1. We have also included the details of the 5 pathogens not shown in the figure, with explanation, in the revised figure legend:

"Figure 5: Venn diagram illustrating the associations between febrile population clinical presentation and pathogens identified.

Circles are scaled to the number of pathogens detected in each type of febrile population. Undifferentiated, shown in green, 23 pathogens (including pathogens also seen in other populations); febrile neurological, shown in red, four pathogens; febrile gastrointestinal, shown in blue, two pathogens; febrile respiratory, shown in purple, one pathogen, febrile haemorrhagic, shown in yellow, seven pathogens. Five pathogens are not represented in the figure as they were only detected in febrile populations classified as co-morbid (Listeria spp., Pasteurella spp. and Toxoplasma gondii) or in febrile populations with a specific febrile aetiology suspected (Leishmania donavani, and Yersinia pestis). "

Page 48, Paragraph corresponding to Figure 5, Line 1226

The authors count 29 zoonoses considering Rickettsia (SFGR) and Rickettsia (TGR) as different zoonoses. However in figure 6 they include Rickettsia (SFGR) and Ricketts TGR) as a single because they speak of 4 hemorrhagic zoonoses in the description of the figure:

"febrile haemmorhagic, shown in orange, 4 pathogens" In figure 7 they also graph both rickettsiosis separately. zoonoses should always be counted in the same way throughout the manuscript.

See responses to the linked points above.

Page 48, Paragraph corresponding to Figure 6, Line 1233 If they talk about 4 hemorrhagic pathogens they would not be undifferentiated 22 but 21. If

they are 5 hemorrhagic, it is good to talk about 22 undifferentiated

We have updated the legend of the figure (now Figure 4) which now reads:

"Figure 5: Venn diagram illustrating the associations between febrile population clinical presentation and pathogens identified.

Circles are scaled to the number of pathogens detected in each type of febrile population. Undifferentiated, shown in green, 23 pathogens (including pathogens also seen in other populations); febrile neurological, shown in red, four pathogens; febrile gastrointestinal, shown in blue, two pathogens; febrile respiratory, shown in purple, one pathogen, febrile haemorrhagic, shown in yellow, seven pathogens. Five pathogens are not represented in the figure as they were only detected in febrile populations classified as co-morbid (Listeria spp., Pasteurella spp. and Toxoplasma gondii) or in febrile populations with a specific febrile aetiology suspected (Leishmania donavani, and Yersinia pestis). "

Editorial points to be addressed (these are general points, so not all will apply to your paper):

- Please see the end of this email for a list of signed statements from authors and people named in your paper that we will need before we can consider your paper further. Please scan and upload signed author statements and ICMJE conflict of interest forms for all authors with your revised submission.

We have uploaded the ICJME forms for all authors

- You will need to provide permission from the relevant publisher to include any material previously published that you wish to include in your paper. *NA*

- Titles of all research articles should include a study descriptor: such as "a randomised placebo-controlled phase 3 study", and "an observational cohort study", "a systematic review and meta-analysis". Please ensure that you have included a descriptor in the title of your article.

Our title meets this criterion

- Please ensure that your paper (abstract and main text) conforms to the necessary reporting guidelines (eg, CONSORT for randomised trials, STARD for diagnostic tests, STROBE for observational studies, PRISMA for meta-analyses); you can find a list of these guidelines with relevant flow-charts and checklists here: <u>http://www.equator-network.org/</u> *We have followed PRISMA guidelines* - Please provide a structured summary (Background, Methods, Findings, Interpretation) of about 250 words. References should not be cited in the Summary. *We have followed this guidance*

- Please give absolute numbers (numerator and denominator) not just percentages for the main results in the abstract and in the main paper (in the text, tables, or figures). *We have followed this guidance*

- Please give confidence intervals (95% unless otherwise stated in your analysis plan) for point estimates of effect size. Please provide exact p values unless p<0*0001. *We have followed this guidance*

- All original research contributions should include a panel in the discussion that discusses the research in the context of the totality of evidence (see Lancet 2010; 376: 10-11), please include this in your revised article. The panel should include two sections: Systematic review (search terms, databases, search dates, and search results) and Interpretation (what the results of your study add to those identified by your search and what they mean for clinical practice, policy, or future research).

We originally included this panel but were advised (in above email) that a paper of this type does not require this panel so have omitted this

- Please provide: one preferred degree qualification per author and indicate any full professors; affiliation details (department, institute, city, state, country) for each author; full institutional correspondence address for corresponding author. *We have followed this guidance*

- Please check that all authors' names and affiliations are correct. *We have followed this guidance*

- Please ensure you have included, at the end of the Methods section, a short paragraph with the heading "Role of the funding source" with the standard wording "The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication." Amend this wording to accurately reflect the role of the study sponsor or any restrictions in access to data. *We have followed this guidance and added this section to the methods*

- Please include, at the end of the main text, a "Contributors" section detailing the role of each author in the preparation of your paper. *We have followed this guidance*

- Please include, at the end of the main text, a "Conflicts of interest" statement summarising key conflicts from the ICMJE forms. The standard wording, if there are no conflicts is "We

declare that we have no conflicts of interest." We have followed this guidance. The ICMJE forms are uploaded and content corresponds to the statement in the paper

- Images that have been published previously should be accompanied by a statement indicating permission to reproduce the image. If required, further assistance can be obtained from the editorial team. If you have borrowed published images from colleagues, you must obtain permission from the publisher of the paper, not just from the authors. *NA*

- Please ensure that you provide your figures in an editable format. For trial profiles a word file made of editable text boxes is the preferred format. For any statistical images (histograms, survival or time-to-even curves, line graphs, scatter graphs, forest plots, etc) you should provide editable vector files (ie, the original artwork generated by the statistical package used to make the image). Our preferred formats for these files are .ai, .eps, or .pdf. We cannot guarantee accurate reproduction of images without these files. *We hope that our figures (all pdf format) meet these requirements.*

- Figure titles should be a maximum of 30 words. *We have followed this guidance.*

- References should be in the Vancouver style and numbered in the order in which they first appear in the manuscript. References in figures, panels, and tables should be numbered in sequence with the references in the text where that figure, panel, or table is cited. Please ensure tables and figures are cited correctly in the body text to prevent the need for renumbering of references should the table and figure citations subsequently move. *We have followed this guidance.*

- For papers listed in references that are "in press" we need to see a galley proof and letter from the publisher stating that it is 'in press' as well as the full expected citation (ie, publication date/volume/issue etc). *NA*

- Please ensure that references are not inserted as Footnotes. *NA*

Please include the signatures of any people whose names were on a previous version of this manuscript as an author but have now been deleted, or reclassified as an acknowledgment. Ex-authors should declare that they have agreed to have their names deleted or reclassified. *NA*

If you have added to or changed the order of existing authors, we require signed statements from ALL authors that they are happy with these changes. *NA*

Guidelines on electronic submission of text and figures are available at: <u>http://ees.elsevier.com/thelancetid/</u>. Please read these carefully; to ensure efficient preparation for publication, the text and figures should conform to these guidelines.

To submit your revised manuscript, please visit The Lancet Infectious Diseases' Online Submission and Peer Review Website at: <u>http://ees.elsevier.com/thelancetid/</u>

You will need to enter your username and password.

Your username is: Your username is: Jo.Halliday@glasgow.ac.uk

If you need to retrieve password details, please go to: <u>http://ees.elsevier.com/THELANCETID/automail_query.asp</u>

After you have entered your account details, remember to click the 'Author' button. You will see a menu item called 'Submission Needing Revision'. You will find your manuscript there.

If you have not yet supplied your signed statements please do so now. You can download and complete the Author Statements form (<u>http://www.download.thelancet.com/flatcontentassets/authors/tlid-author-signatures.pdf</u>) and upload the signed copies in to EES with your manuscript. *We have uploaded an update signed author form*

Please supply completed ICMJE forms for all authors (as long as the information has not changed, these forms can be used for any submission to journals that subscribe to the ICMJE):<u>http://download.thelancet.com/flatcontentassets/authors/icjme-coi-form.pdf</u> *We have uploaded these forms*

Please also include written consent of any cited individual(s) noted in acknowledgments or cited as personal communications.

The journal's requirements are described in the Information for Authors page at: <u>http://www.thelancet.com/journals/laninf/misc/authorinfo</u>

The editors may use such information as a basis for editorial decisions and will publish such disclosures if they are believed to be important to readers in judging the manuscript.

In summary, the signed statements we require are:

* Authors' contributions - signed by yourself and your co-authors indicating that you have all

seen and approved the paper

* Signed conflict of interest statements for ALL authors

Please also take care to check whether you need to provide the following:

- * Signed copyright permissions for previously published material
- * Signed consent from individuals cited in the Acknowledgments
- * Signed consent for use of cited personal communications
- * Signed patient's consent and permission to publish

Guidelines on electronic submission of text and figures are available at: <u>http://ees.elsevier.com/thelancetid/</u>. Please read these carefully; to ensure efficient preparation for publication, the text and figures should conform to these guidelines.

Yours sincerely,

Onisillos E C Sekkides Deputy Editor, The Lancet Infectious Diseases 125 London Wall London EC2Y5AS UNITED KINGDOM <u>onisillos.sekkides@lancet.com</u>

1		
2		Zoonotic causes of febrile illness in malaria endemic countries: a systematic
5 1		Teview
т 5		Authors
6		Io F B Halliday, Manuela Carugati, Michael F Snavely, Kathryn I Allan, Julia
7		Beamesderfer, Georgia A F I adbury, Deborah V Hoyle, Paul Holland, John A
, 8		Crump, Sarah Cleaveland, Matthew P Rubach.
9		
10		Affiliations
11		Jo E B Halliday (PhD): Boyd Orr Centre for Population and Ecosystem Health,
12		Institute of Biodiversity, Animal Health and Comparative Medicine, University of
13		Glasgow, Glasgow, United Kingdom.
14		
15		Manuela Carugati (MD): Division of Infectious Diseases, Duke University Medical
16		Center, Durham, North Carolina, United States of America; Kilimanjaro Christian
17		Medical Centre, Moshi, Tanzania; Division of Infectious Diseases, Fondazione
18		IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
19	ī	
20		Michael E <u>SnaveleySnavely</u> (MD): Duke Global Health Institute, Duke University,
21		Durnam, North Carolina, United States of America.
22 22		Kathryn I Allan (DhD): Royd Orr Contra for Dopulation and Ecosystem Health
23 21		Institute of Biodiversity Animal Health and Comparative Medicine University of
25		Glasgow Glasgow United Kingdom
26		Shusgow, Shusgow, Shucu Kingdom.
27		Julia Beamesderfer: Perelman School of Medicine. University of
28		Pennsylvania, Philadelphia, Pennsylvania, USA
29		
30		Georgia A F Ladbury (PhD): Boyd Orr Centre for Population and Ecosystem Health,
31		Institute of Biodiversity, Animal Health and Comparative Medicine, University of
32		Glasgow, Glasgow, United Kingdom.
33		
34		Deborah V Hoyle (PhD): Roslin Institute and Royal (Dick) School of Veterinary
35		Studies, Edinburgh, UK.
30		Paul Halland David Orr Contro for Danulation and Econoratory Haalth Institute of
3/		Paul Holland: Boyd Orr Centre for Population and Ecosystem Health, Institute of Diadiversity, Animal Health and Componenting Madicing, University of Classow
20 20		Glasgow, United Kingdom
<u>4</u> 0		Olasgow, Olited Kingdolli.
41	T	John A Crump (MD): Centre for International Health, University of Otago, Dunedin,
42		New Zealand: Division of Infectious Diseases. Duke University Medical Center.
43		Durham, North Carolina, United States of America; Centre for International Health,
44		University of Otago, Dunedin, New Zealand; Duke Global Health Institute, Duke
45		University, Durham, North Carolina, United States of America; Kilimanjaro Christian
46		Medical University College, Moshi, Tanzania.
47		
48		Sarah Cleaveland (PhD): Boyd Orr Centre for Population and Ecosystem Health,
49		Institute of Biodiversity, Animal Health and Comparative Medicine, University of

50 Glasgow, Glasgow, United Kingdom.

- 51
- 52 Matthew P Rubach (MD): Division of Infectious Diseases, Duke University Medical
- 53 Center, Durham, North Carolina, United States of America; Kilimanjaro Christian
- 54 Medical Centre, Moshi, Tanzania; Duke Global Health Institute, Duke University,
- 55 Durham, North Carolina, United States of America. Programme in Emerging
- 56 Infectious Diseases, Duke-National University of Singapore Medical School,
- 57 Singapore.
- 58
- 59 Correspondence to
- 60 Dr. Jo E.B. Halliday, Boyd Orr Centre for Population and Ecosystem Health, Institute
- 61 of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
- 62 Glasgow, G12 8QQ, United Kingdom.
- 63 E-mail address: jo.halliday@glasgow.ac.uk
- 64 <u>Phone: +44 (0)141 330 5741</u>
- 65

66

67 Abstract

68 Fever is one of the most common reasons for healthcare seeking globally and the

- 69 majority of human pathogens are zoonoseszoonotic. We conducted a systematic
- 70 review to describe the occurrence and distribution of zoonotic causes of human febrile
- 71 illness reported in malaria endemic countries. Articles included in the review yielded
- 72 data from 46 (41-853 (48.2%) of the 110 malaria endemic countries included in
- 73 searches. The 181244 articles included described diagnosis of 2930 zoonoses in
- 74 febrile people from 46 countries. The majority of zoonoses were bacterial (n=1617),
- 75 with viruses (n=9), protozoa (n=3) and helminths (n=1) also identified. Leptospira
- 76 spp. and nontyphoidal Salmonella serovars were the most frequently reported 77
- pathogens. Despite evidence of profound data gaps, this review reveals widespread 78
- distribution of a diverse range of zoonotic causes of febrile illness. ImprovedGreater 79 understanding of the epidemiology of zoonoses in different settings is needed to
- 80 improve awareness and management of the multiple zoonotic causes of febrile illness.
- 81

82 Introduction

- 83 Fever is one of the most common syndromessymptoms prompting healthcare seeking 84 globally (1-3).¹⁻³ Fever has myriad causes and thetheir non-specific clinical 85 presentation means that clinical history and physical examination are often unableinsufficient to accurately suggest theidentify causal pathogen (1).pathogens.¹ 86 87 Limitations in laboratory services and available diagnostic tools further contribute to diagnostic challenges (4). In malaria-endemic countries, fever is often assumed to be 88 89 due to malaria $\frac{(5)}{1}$.⁵ The mortality and morbidity attributable to malaria remains 90 considerable, but there is also evidence of widespread over-diagnosis (6,7) and indeed globally-within malaria-endemic areas (8)...⁶⁻⁸ The recognized over-diagnosis of 91 malaria together with declines in malaria incidence since the peak in global malaria 92 deaths in 2004 + (9,10) have prompted attention to non-malaria causes of fever in these 93 mala<u>ria-endemic</u> areas- $(1^{1,12})$. Zoonotic pathogens are likely to play a substantial role 94 95 globally as causes of fever globally. Almost two-thirds of all human pathogens are zoonotic (13),¹³ and there is growing evidence that many zoonoses cause more cases 96 of human febrile illness than previously appreciated $\underline{-(^{12,14-20})}$. Improved 97 98 understanding of the impacts and burdens of zoonotic causes of fever in malaria-99 endemic countries would provide the epidemiological evidence base to enable for 100 disease control program development and also influence diagnostic and treatment 101 algorithms for fever, with the potential to improve clinical outcomes. The aim of this 102 study was to systematically review the published literature to describe the occurrence
- 103 and distribution of reported zoonotic causes of human febrile illness in countries 104 where malaria is endemic.
- 105

106 **Methods**

107 Search strategy and selection criteria

108 The target literature for this systematic review was peer-reviewed published articles 109 that described the testing of one or more febrile peopleperson from malaria-endemic 110 countries for one or more zoonotic pathogenspathogen using robust diagnostic testing 111 criteria to demonstrate acute infection. Literature searches of the Medline and Embase

- 112 databases were run using the OvidSP gateway. Searches were limited to English
- 113 language articles published in the period 2004 to 20162019 inclusive, to span the 114
- period from the described peak of global malaria mortality in 2004 (9).to present.⁹
- The searches were last executed on 26 August 2016.03 January 2019. Outputs of 115

database searches were combined and de-duplicated in R (21). Fullusing R.²¹
 Additional details of searches, screening, review, and data extraction processes are
 given in the Supplementary Information (SI).appendix.

118 119

120 We constructed three Three search concepts for 'Fever', 'Zoonoses', and 'Malaria Endemic Countries' fever,' 'zoonoses,' and 'malaria endemic countries' were 121 constructed. To construct the 'Fever' fever' concept the exploded subject heading and 122 123 keywords were combined using database appropriate syntax (e.g-., exp Fever/ OR 124 fever\$1.mp. OR febrile.mp.). For the 'Zoonoses' concept, a reference list of 125 eligible zoonotic pathogens was compiled using lists of zoonotic diseases from the 126 World Health Organization (WHO) (22) and World Organisation of Animal Health (OIE) (23))²² and World Organisation of Animal Health (OIE)²³ as well as literature-127 based searches to identify frequently reported zoonotic causes of human fever. We 128 129 conducted preliminary searches of Medline and Embase using the search syntax '(exp 130 Fever/ OR fever.mp.) AND (exp Zoonoses/ OR zoonoses.mp OR zoonosis.mp)' 131 limited to humans. FullAdditional details of these three preliminary searchessearch 132 concept construction are given in the SI appendix. All pathogens identified through 133 these approaches were mapped to existing subject headings and keywords at the 134 lowest appropriate taxonomic level possible, typically genus or species. In instances 135 where pathogen species or serovars within the same genus varied in their zoonotic 136 status, search concepts were constructed to include all zoonotic and non-zoonotic 137 species or serovars and articles relating to non-zoonotic species were excluded at the 138 full text stage. The candidate pathogens were classified to differentiate pathogens 139 normatively acquired by people through direct or indirect transmission from 140 vertebrate animals to humans, as compared to pathogens where zoonotic transmission 141 has been recorded but where the majority of human infections are not acquired 142 through zoonotic transmission. We classified pathogens using the stages in the process towards human endemicity defined in Wolfe et al (24). Pathogens classified 143 as stages 1 to 3 were retained and full details are given in the SL.²⁴ Pathogens 144 145 classified at stages one to three (normatively acquired through zoonotic transmission) 146 were retained (appendix). The search concept for each pathogen or disease included 147 exploded subject headings for both the pathogen and the diseases caused in humans 148 and terms for both pathogen and disease were also included as keywords (e.g., exp 149 anthrax/ OR anthrax.mp. OR exp Bacillus anthracis/ OR bacillus anthracis.mp.). The 150 list of pathogen- or disease- specific searches was combined using OR syntax to 151 generate the full 'zoonoses' search concept (Table 1 & SIappendix). The 'Malaria 152 Endemic Countries' malaria endemic countries' concept was constructed by mapping 153 country names for countries defined as malaria endemic in the WHO global malaria 154 reports for the years 2005 and 2016 to Medline and Embase subject headings (10,25). 155 Each country was searched for using both the exploded subject heading where 156 available and keywords in all cases (e.g., exp Kenya/OR Kenya.mp.). All three concepts, Fever', 'Zoonoses', and 'Malaria Endemic Countries' were combined using 157 AND operators and database specific syntax gateway (SI).^{10,25} Each country was 158 159 searched for using both the exploded subject heading where possible and keywords in all cases (e.g., exp Kenva/OR Kenva.mp.). The three concepts, fever, ' 'zoonoses,' and 160 'malaria endemic countries' were combined using AND operators and database 161 162 specific syntax (appendix).

163

164 Study selection and validity assessment

165	Articles that reported the diagnosis of a zoonotic pathogen in a population from a
166	malaria endemic country defined principally on the basis of febrile illness were
167	selected for full-text review. <u>Conference proceedings and records that did not include</u>
168	any abstract text or an abstract in English were excluded. Abstracts and titles were
169	screened by two independent reviewers (two of DVH, GL, MC, and MES, KJA,
170	GAFL, DVH, JAC, SC and MPR) using pre-defined criteria (SI Table S2 appendix
171	table S1). Articles were selected for inclusion if the abstract or title described clinical
172	and/or laboratory evaluation of a group of ≥ 2 people with a <u>all of whom had</u> fever and
173	diagnosissome of whom were diagnosed of one or more pathogens from the reference
174	list of zoonotic pathogens (Tabletable 1). Abstracts referring to the use of blood
175	culture were also retained at this stage even if a zoonosis was not explicitly mentioned
176	in the abstract (SI Table S2). Conference proceedings were excluded.appendix table
177	<u>S1).</u> When two reviewers disagreed on article classification, a third independent
178	reviewer (DVH, GLone of JEBH , MC, MES, GAFL, DVH or MPR) resolved the
179	tiebreak. Full text articles were sought for all articles not excluded at the screening
180	stepduring abstract review steps. All articles were searched for using PubMed, Google
181	and the libraries of the University of Glasgow, Duke University, Washington
182	University in St. Louis, and US Centers for Disease Control and Prevention (US
183	CDC). Articles were excluded if a full-text for the citation could not be obtained.
184	Two independent reviewers (two of, JEBH, MPR, JBMC, MES, JB and MCMPR)
185	evaluated full text articles using pre-defined inclusion and exclusion criteria
186	(Tabletable 2)., appendix table S2). Strict diagnostic case definitions were used based
187	on WHO and <u>US</u> CDC guidelines to ensure <u>ensured</u> that only studies reporting robust
188	and specific diagnostic methods were retained (Table 12). Articles were excluded
189	if they met <u>did not meet</u> one or more of the study exclusion <u>inclusion</u> criteria or failed
190	to <u>if they did</u> meet at least one <u>of the</u> study inclusion criterion (Table <u>exclusion criteria</u>
191	(table 2). In cases where reviewers disagreed on article classification, discrepancies
192	were checked and resolved by JEBH in discussion with other reviewers.

193

194 Table 1. Zoonoses included in the review, with details of species and serovars
 195 excluded where appropriate.

Pathogen	Species, subspecies, and serovars excluded	Pathogen
		type
<u>Alphaviruses</u>	All species excluded with the exception of	<u>Virus</u>
	Eastern equine encephalitis virus (EEEV)	
	complex, Venezuelan equine encephalitis (VEEV)	
	complex, and Western equine encephalitis	
	(WEEV) complex	
<u>Anaplasma spp.</u>	-	Bacteria
Aphthoviruses	All species excluded with the exception of Foot-	<u>Virus</u>
	and-mouth disease virus	
Avulaviruses	All species excluded with the exception of	Virus
	Newcastle disease virus	
<u>Babesia spp.</u>	-	Protozoa
<u>Bacillus</u>	-	Bacteria
antrhracis		
Bartonella spp.	B. bacilliformis and B. quintana excluded	Bacteria
Borrelia spp.	B. recurrentis excluded	<u>Bacteria</u>
Bovine	-	Prion
<u>spongiform</u>		

encephalopathy		
Brucella spp.	_	Bacteria
Burkholderia	<i>B. cepacia</i> complex and <i>B. pseudomallei</i> excluded	Bacteria
spp.		
<i>Campylobacter</i>	-	Bacteria
spp.		
Chlamydia spp.	All species excluded with the exception of C.	Bacteria
	<u>psittaci</u>	
Coxiella burnetii		Bacteria
Cryptosporidium	C. hominis excluded	Protozoa
spp.		
Ebolavirus	-	Virus
Echinococcus	-	Helminth
spp.		
Ehrlichia spp.	-	Bacteria
Enteroviruses	All species excluded with the exception of Swine	Virus
	vesicular disease virus	
Escherichia spp.	All species excluded with the exception of Shiga-	Bacteria
	toxin producing E. coli	
Flaviviruses	All species excluded with the exception of	Virus
	Japanese encephalitis virus (JEV), West Nile	
	virus (WNV), and Tick-borne-encephalitis virus.	
Francisella spp.	All species excluded with the exception of <i>F</i> .	Bacteria
	tularensis	
Hantavirus	-	Virus
Henipaviruses	-	Virus
Lassa virus	-	Virus
Leishmania spp.	L. donovani excluded if detected in India	Protozoa
Leptospira spp.	-	Bacteria
Listeria spp.	2	Bacteria
Lyssavirus	All species excluded with the exception of Rabies	Virus
	virus	
Marburg virus	2	Virus
<u>Mycobacterium</u>	All species excluded with the exception of <i>M</i> .	Bacteria
	bovis and M. avis	
Nairovirus	All species excluded with the exception of	Virus
	Crimean-Congo haemorrhagic fever virus	
<u>Orientia¹</u>	<u>- </u>	Bacteria
Orthopox viruses	All species excluded with the exception of	Virus
	Cowpox virus, Monkeypox virus, and Vaccinia	
	virus	
Pasteurella spp.	<u> </u>	<u>Bacteria</u>
Phleboviruses	All species excluded with the exception of Rift	Virus
	Valley fever (RVF) virus	
<u>Rickettsia spp.²</u>	<u>R. prowazekii excluded</u>	Bacteria
Salmonella spp.	All species, subspecies, and serovars excluded	Bacteria
	with the exception of nontyphoidal Salmonella	
	serovars	
Schistosoma spp.	S. haematobium, S. intercalatum, and S.	Helminth

		<i>mekongi</i> .excluded	
	<u>Streptobacillus</u>		Bacteria
	<u>spp.</u>		
	<u>Streptococcus</u>	All species excluded with the exception of S.	Bacteria
	<u>spp.</u>	canis, S. suis, S. equi, and S. iniae	
	<u>Taenia spp.</u>		Helminth
	<u>Toxocara</u>		<u>Helminth</u>
	<u>Toxoplasma</u> gondii	=	Protozoa
	<i>Trichinella</i> spp.	-	Helminth
	Trypanosoma	All species excluded with the exception of <i>T</i> .	Protozoa
	spp.	brucei rhodesiense and T. cruzi	
	Varicelloviruses	<u>All species excluded with the exception of</u> Pseudorabies virus	<u>Virus</u>
	Vesiculoviruses	All species excluded with the exception of	Virus
	<u>v esteuto viruses</u>	Vesicular Stomatitis virus	<u>viius</u>
	Yersinia spp	All species excluded with the exception of Y	Bacteria
	<u>10.80000 5000</u>	pestis. Y. enterocolitica and Y. pseudotuberculosis	Duotonu
196	¹ Orientia was c	covered by search syntax for <i>Rickettsia</i> .	<u> </u>
197	2 For data extrac	ction, data on <i>Rickettsia</i> were classified as <i>Rickettsia</i> (SI	FGR) or
198	Rickettsia (TGR) where the data resolution allowed. When details on th	e species of
199	Rickettsia were	not given, these data were classified as <i>Rickettsia</i> spp.	<u> </u>
200			
201	Table 2: Inclusi	on and exclusion criteria for full text review	
	Outcome C	Criterion	
	Inclusion:	Febrile population (≥ 2 people with a fever, defined a	is body
		<u>temperature \geq 38.0°C)</u>	
	•	Diagnosis of one or more zoonotic pathogens from pathogens	re-defined
		reference list of eligible aetiological agents (table 1)	
	•	Diagnostic test criteria:	
	i	Culture of the pathogen from sample(s) collected from	<u>m a febrile</u>
		person	
	<u>ii</u>) Direct detection of the pathogen (e.g., by PCR based	techniques)
		from sample(s) collected from a febrile person	
	<u>ii</u>	i) Serological diagnosis of acute infection based on test	ing of both
		acute and convalescent phase serum samples and der	nonstration of
		seroconversion	
	<u>i</u>	v) Diagnosis of acute infection based on detection of pa	thogen-
		specific antibody or antigens in a single serum sampl	<u>e only for</u>
		selected pathogens, for which widely accepted case c	lefinitions
		deemed pathogen-specific antibody or antigen detect	<u>10n</u>
		sufficiently accurate	- 1 41
	<u>v</u>	<u>) Igwi detection in cerebrospinal fluid (USF) for selection which widely occurred accurate for the selection in the last second second</u>	ed pathogens
		$\frac{100 \text{ which widely accepted case definitions include Ig}}{CSE^2}$	givi detection in
		<u>Lor</u>	

	Exclusion: • Failure to meet inclusion criteria described above
	• Lack of study detail e.g., number of people tested for each
	pathogen
	• Negative diagnostic test results in all patients
	• Study designed to evaluate diagnostic test and/or vaccine
	performance without presenting novel data on number or
	proportion of patients diagnosed with a study pathogen from a
	previously described population of febrile people.
	• Study described as a group of ≥ 2 people principally classified
	based on a shared (100% frequency) aetiological diagnosis
	Review
202	¹ The following met study criteria for valid diagnostics for nathogen detection based
202	on single sera only. Lentospira spin agglutination titer of > 800 by microscopic
203	agglutination test in one serum specimen ²⁶ detection of Hantavirus-specific IoM in a
205	serum sample ²⁷ : detection of virus-specific IgM antibodies in serum with
205	confirmatory virus-specific neutralizing antibodies for Eastern equine encephalitis
207	virus (EEEV). West Nile virus (WNV). Western equine encephalitis virus (WEEV)
208	and Venezuelan equine encephalitis virus (VEEV) 28 ; identification of lyssavirus
209	specific antibody by indirect fluorescent antibody test or complete rabies virus
210	neutralization at 1:5 dilution in the serum of an unvaccinated person 29 : detection of
211	viral antigens in blood by enzyme-linked immunosorbent assay for Ebola ^{30,31} .
212	Marburg ^{31,32} , Lassa ^{31,33} , and Crimean-Congo haemorrhagic fever viruses ³¹ .
213	detection of Rift Valley fever antigens or IgM in blood by enzyme-linked
214	Immunosorbent assay ³⁴ ; and
215	2 IgM detection in CSF was considered a valid diagnostic for EEEV, Japanese
216	encephalitis virus (JEV), rabies virus, WEEV, WNV and VEEV ^{28,29,35} .
217	
218	Data extraction and bias assessment
219	Data extraction was conducted independently by one of two reviewers (JEBH and
220	MC). Article-level data were extracted on the location (country and WHO regional
221	classification (26)), ³⁶ study period (start and end year of data collection), and
222	eligibility criteria used in the study. Data extracted on the study population included
223	whether the population was described inpatient or outpatient and urban or rural. Each
224	population reported was classified according to the clinical presentation as
225	undifferentiated febrile or differentiated febrile. Differentiated febrile populations
226	were further classified as: i) febrile neurologic; ii) febrile hemorrhagichaemorrhagic;
227	iii) febrile gastrointestinal; iv) febrile respiratory; v) specific febrile aetiology
228	suspected (27-29). Articles were also classified to record if the; vi) febrile co-morbid
229	group (i.e., malignancy, immunocompromise). ³⁷⁻³⁹ Data extracted on each population
230	included any demographic restriction of the study population, the age range of the
231	study participants, whether the population was described as inpatient or outpatient,
232	urban or rural, and whether data were collected during a reported disease outbreak or
233	not. To extract data on the zoonotic pathogens included in each study, every included
234	article was first classified to record if the study reported looking for diagnosedor
235	diagnosing one or more febrile individuals with eachany of the zoonotic pathogens
236	included in the study reference list (Tabletable 1), irrespective of the diagnostics used.
237	Second, forAdditional data were extracted when the article reported application of a
238	diagnostic approach that met study validity criteria. For each combination of article
239	and pathogen, details of the valid diagnostic methods used, <u>the</u> type and number of
240	samples tested, and the number of positive samples were recorded. (appendix table

- 241 S3, S4). In instances where more than one valid diagnostic method was used in the 242 same study for a given pathogen (e.g-,, culture-based and serologic case definitions), 243 data on the total number of individuals tested and positive for each pathogen were 244 aggregated. Data on the number of individuals tested and number positive were only 245 extracted for zoonotic pathogens diagnosed using methods that met study inclusion 246 eriteria.using valid methods were aggregated. Some articles contributed data on more 247 than one pathogen but no data on participant numbers were extracted for pathogens 248 not identified using diagnostic approaches that met study inclusion criteria.
- 249

250 The principal source of potential bias affecting the interpretation of the findings of 251 this study is the lack of standardization of the febrile populations included in different 252 studies. Criteria were defined to classify potential bias in study representativeness and prevalence estimate precision (appendix table S5).⁴⁰⁻⁴² The representativeness bias 253 254 criterion was designed to classify the representativeness of the study population, 255 relative to the general population where the study was conducted. This was based on 256 the description of the febrile population, the restriction (if any) of the study sample to specific clinical or demographic sub-populations and the reporting of disease 257 258 outbreaks at the time of data collection. Each population was classified as follows: i) 259 populations classified as undifferentiated febrile with no demographic restriction and no clinical aetiologies excluded were classified as low risk; ii) populations classified 260 261 as undifferentiated febrile with demographic restriction and/or reporting exclusion of 262 specific aetiologies or syndromes were classified as medium risk; iii) differentiated 263 febrile populations and those from studies reporting disease outbreaks at the time of 264 data collection were classified as high risk. The second, outcome-level, bias criterion 265 was designed to classify risk of bias in the estimated precision of the proportion of fevers attributed to each pathogen. Thresholds used for this criterion are the sample 266 267 sizes needed to estimate proportions of 50% and 10% with 95% confidence and 0.05 268 precision respectively, assuming an infinite population size. Each population was 269 classified as follows: i) proportion estimates based on a sample size of greater than or 270 equal to 385 were classified as low risk; ii) proportion estimates based on a sample 271 size of greater than 385 but less than 139 were classified as medium risk; iii) 272 proportion estimates based on a sample size of less than 139 were classified as high 273 risk. 274

Additional potential sources of bias included variation in the pathogens tested for, and variation in the diagnostic approaches applied. For included studies, data on the pathogens tested for (with any diagnostic approach) were summarized alongside
 pathogens for which diagnostic test criteria were met to qualitatively evaluate the biases introduced by only extracting data on pathogens diagnosed using methods meeting study inclusion criteria.

282 **Data analysis**

Extracted data on the zoonotic pathogens diagnosed using valid methods, number of
individuals tested for each pathogen, and number of individuals positive for each
pathogen were used to estimate the proportion of fevers attributable to each pathogen
for each unique pathogen and study combination. All analyses were conducted in R
(21) and plots were made using the package ggplot2 (30).²¹ and plots were made
using the package ggplot2.⁴³

289

290Role of the funding source

291 The funders of the study had no role in study design, data collection, data analysis,
 292 data interpretation, or writing of the report. The corresponding author had full access
 293 to all the data in the study and had final responsibility for the decision to submit for
 294 publication.
 295

296 The principal sources of potential bias identified in the course of this study are the 297 lack of standardization of the febrile populations included in different studies, variation in the pathogens tested for, and variation in the diagnostic approaches 298 299 applied. Data enabling the characterization of study populations (e.g. location, 300 outbreak or not, inpatient or outpatient, rural or urban etc.) were collected to enable 301 assessment of the influence of these factors on reported outcomes. Data on the pathogens looked for in included studies with any diagnostic approach were 302 303 summarized alongside pathogens for which diagnostic test criteria were met to 304 qualitatively evaluate the biases introduced by only extracting data on pathogens 305 diagnosed using methods meeting study inclusion criteria. Publication bias is likely to 306 strongly influence the outputs from this review, but it was not possible to 307 systematically evaluate this as publication of negative findings is rare, diagnostic 308 practices are highly variable and no robust methodology exists to estimate the 309 expected occurrence of the multiple pathogens included in this review. The review was designed to document only data on the reported presence of zoonotic causes of 310 311 febrile illness in populations that were principally defined by the presence of fever-312 The application of diagnostic criteria that are strictly comparable across pathogens is 313 not feasible. We applied strict diagnostic criteria, erring towards high specificity but 314 reduced sensitivity to minimize the influence of this source of bias. The implications 315 of these likely biases for the interpretation of study data are discussed. 316

Results

317

318 Database searches yielded a total of 12,27716,332 and 8,06510,574 records through Embase and Medline, respectively, resulting in a total of $\frac{12,92717,852}{12,92717,852}$ unique records 319 following de-duplication (Figure figure 1). English language abstracts were available 320 321 for 10,927A total of 4,531 (25.4%) records and 687 were excluded during pre-322 screening, 13,321 (74.6%) records were screened and 962 (7.2%) of these were 323 retained after title and abstract review. In total, $\frac{506718}{74.6\%}$ articles were 324 excluded during full text review (Figure 1). Finally, 181 and 244 (25.4%) articles met 325 all study inclusion criteria and were included in this review (Figure 1 and Table 3). 326 (figure 1, appendix table S6). 327

328 Articles included in the review yielded data from $\frac{46}{41-853}$ (48.2%) of the 110 329 malaria endemic countries included in searches. Seven (figure 2). The majority of 330 articles with a single country origin (n=235) reported data from multiple countries. 331 The distribution Africa (83 of the remaining 174235 articles by country and WHO 332 region is shown in Figures 2 and 3, and Table 4. Sixty-seven (37.0%) of the 181 333 studies included in the review, 35.3%) or South-East Asia (81 of 235 articles, 34.5%) 334 (appendix table S7, figure S1). One hundred and six (45.1%) of the 235 articles with a 335 single country origin were conducted in one of foursix dominant countries: India 336 (n=23), Thailand, (n=1731), United Republic of Tanzania (n=15), and 22), Thailand, 337 (n=20), Nepal (n=12). Bangladesh (n=11), and Nigeria (n=10). The data reported in 338 included studies the review were gathered from between 1994 to 2015 and 2017 339 inclusive.

340

341	The 181 The 244 articles included for data extraction reported looking for and
342	diagnosing 40 and 31 zoonoses, respectively, in these populations (figure 3). The
343	number of included zoonoses was reduced to 30 after the criteria for diagnostic testing
344	approach were applied. The 244 articles yielded data that met diagnostic test criteria
345	for a total of 2930 zoonoses. The 29 pathogens for which diagnostic data were
346	extracted that included $\frac{16}{17}$ bacterial pathogens ($\frac{55 \cdot 2\%}{9}$, $\frac{9}{56} \cdot 7\%$), nine viruses
347	(3130.0%), 3 three protozoa $(10.30%)$, and 1 one helminth $(3.4%)$. Nontyphoidal 3%).
348	Leptospira spp., nontyphoidal Salmonella serovars (NTS), Leptospira spp.) and
349	rickettsioses were the most frequently reported bacteria, while Japanese encephalitis
350	virus (JEV). Hantavirus, and West Nile virus (WNV) dominated among viruses
351	(Figures 4, 5 and 7). Before applying diagnostic test validity criteria, the 181 articles
352	reported looking for and diagnosing 36 and 35 zoonoses respectively in these
353	populations. This list of zoonoses was reduced to 29 after the criteria for diagnostic
354	testing approach were applied (Figure 4). The breakdown of articles contributing data
355	on different pathogens in different WHO regions is shown in Figure 5 reported
356	viruses (figures 3 4)
350	<u>viruses (figures 5, 4).</u>
358	The number of febrile individuals included in each study population ranged from 4 to
359	13.845 with a median of 300 (IOR: $120 - 812$). In total, 309 records of zoonotic
360	nathogens causing fever were extracted from the 244 articles. The proportion of
361	fevers attributed to each pathogen reported ranged from $<1.0\%$ to 95.0% (figure 4)
362	The risk of bias classification in the precision of the proportion of fevers attributed to
363	each zoonosis was 136 (44.0%) of 309 low risk, 79 (25.6%) of 309 medium risk, and
364	94 (30.4%) of 309 high risk.
365	
366	Of the $\frac{181244}{181244}$ studies, $\frac{75}{41487}$ ($\frac{35}{7}$) described the clinical setting as inpatient,
367	$\frac{28(15\cdot536(14\cdot8\%))}{28(15\cdot536(14\cdot8\%))}$ as outpatient, $\frac{22(12\cdot239(16\cdot0\%))}{28(12\cdot239(16\cdot0\%))}$ as mixed, and for 56
368	(30.9%) , $\overline{82}$ (33.6%) gave no clear classification of the clinical setting was given.
369	Twenty-five (13.8%). Thirty (12.3%) studies described the study area as urban, 43
370	(23-859) (24.2%) as rural, 24 (13-345 (18.4%) mixed or both, and for 89 (49-2%) 110
371	(45.1%) gave no clear classification of the study area was given. Of the 181 febrile
372	study. Eighteen (7.4%) studies included adult participants, 43 (17.6%) included
373	children, 153 (62.7%) included both adults and children and 30 (12.3%) gave no clear
374	classification of the ages included. Of the 244 studies, twelve (4.9%) described a
375	demographically restricted population, 55 (22.5%) reported some exclusions from the
376	population, and 32 (13.1%) mentioned exclusion of malaria-infected individuals
377	specifically (appendix table S6). Of the 244 studies, 73 (29.9%) reported looking for
378	more than one zoonosis, 43 (17.6%) diagnosing more than one zoonosis and 37
379	(15.2%) contributing data on more than one zoonosis. Of the 244 studies, $10 (4.1%)$
380	were described as outbreak investigations and 169 (69.3%) populations, 41 were
381	classified as undifferentiated febrile populations. Among the 75 differentiated
382	populations, 36 (48.0%) had specific febrile aetiologies suspected, 17 (22.7%) were
383	classified as differentiated, 95 (52-5 febrile neurological, eight (10-7%) as
384	undifferentiated, and 45 (24-9%) were mixed. Among the differentiated comorbid
385	populations 4 (9.8%) were, eight (10.7%) as febrile haemorrhagic, five (6.7%) as
386	febrile gastrointestinal , 5 (12-2%) febrile haemorrhagic, 17 (41-5%) febrile
387	neurological, 12 (29-3%) had specific febrile aetiologies suspected, and the remaining
388	$3 (7 \cdot and one (1 \cdot 3\%))$ were mixed populations (including patients with as febrile
389	respiratory symptoms) The associations between clinical presentation of febrile
200	populations and the 29subset of 25 pathogens identified in the different groups

391 differentiated populations are shown in Figure 6. All 6 pathogens identified in febrile 392 haemorrhagic populations were also detected in undifferentiated patient groups. 393 Eastern Equine Encephalitis virus (EEEV) and Nipah virus were only detected figure 394 5. The risk of bias classification in febrile neurological populations and 395 *Campylobacter* spp. was only detected in athe representativeness of febrile 396 gastrointestinal population (Figure 6). 397 398 In total, 9 (5-0%) of 181 studies included were described as outbreak investigations. 399 These 9 studies included data from 7 countries and 8 pathogens, describing outbreaks of Crimean-Congo Haemorrhagic Fever (CCHF) virus in Pakistan, JEV in Thailand, 400 401 Leptospira spp. in Bangladesh and Thailand, Nipah virus in India, spotted-fever group rickettsioses (SFGR) in Guatemala, Venezuelan Equine Encephalitis virus (VEEV) in 402 403 Peru, WNV in India (2 studies), and Yersinia pestis in Zambia. 404 405 The number of febrile individuals included in each study population ranged from 6 to 406 13,840 individuals, with a median of 291 populations was 121 (49.6%,) of 244 low risk, 45 (18.4%,) of 244 medium risk, and mean of 922. In total, 226 records of 407 408 zoonotic pathogens causing fever were extracted from the 181 articles. Figure 7 plots 409 the proportion of fevers attributed to each pathogen reported in the included studies. The proportion of fevers attributed of a given pathogen ranged from <1% to 95%, 410 411 median 5.5% and mean 13.5%.78 (32.0%,) of 244 high risk. 412 413 Discussion 414 The findings of this This systematic review reveal areveals diverse group of zoonoses 415 causing febrile illness within multiple malaria-endemic countries, often at high 416 prevalence. Zoonoses are documented as a cause of fever in all regions included in this study and many different zoonoses contribute to clinical burdens. However, 417 418 sparse and patchy reporting suggests that the clinical burdenprevalence of zoonoses is 419 likely to be widely under-estimated. As knowledge Knowledge of probable infecting 420 pathogen is paramount crucial to inform the clinical management and prevention of 421 febrile illness, and there is a clear need for further investigation of the zoonotic causes 422 of febrile illness globally to generate data relevant to clinicians, epidemiologists, and 423 health policy makers. Our study highlights the clinical importance of several 424 pathogens, including some that occur across a wide range of areas and at high 425 prevalence. The globally. This study should generate greater awareness about of the 426 clinical importance of zoonotic pathogenszoonoses and provide a pragmatic starting 427 point for actions to better manage these diseases, for example through improved 428 diagnostic and clinical treatment algorithms, as well as. These findings demonstrate 429 the need for enhanced epidemiological understanding that is needed of multiple 430 zoonoses to inform disease prevention. 431 432 This review reveals substantial gaps in the evidence base, including a complete 433 absence of eligible studies from more than half of the majority, 64 (58-2%) of 110 434 countries, included in the review (Figure figure 2). There are multiple steps and biases in the processes from a patient seeking care with febrile illness to the publication of 435 436 an English language scientific paper on the occurrence and prevalence of a specific 437 zoonosis that could be included in this review. The underlying distribution and 438 relative clinical importance of individual pathogens will varyvaries, as well asdo 439 patient healthcare seeking behavior behaviour, clinical, and patient awareness of 440 different pathogens, diagnostic capacities, and probability of publication. It is

441 therefore not plausible to expect this review to yield data on each zoonosisall 442 zoonoses in all countries. However, considering the inclusion of 110 countries and 443 construction of searches for 4850 pathogens or pathogen groups, the identification of 444 just 181244 eligible studies underscores the profound overall shortage of robust quantitative data describing the role of any zoonoses as causes of fever in most 445 446 malaria-endemic countries. The geographic variation in the distribution of studies by country and region (Table 4) is likely to be strongly influenced by variation in 447 448 research and publication effort on the topic of non-malaria febrile illness and cannot 449 be interpreted as an accurate reflection of the underlying distribution of zoonotic pathogens or their clinical importance. The restriction of this review to English 450 451 language texts will also have reduced the probability that studies from French and 452 Spanish speaking countries were included and may partially account for some specific 453 gaps, such as the 27 countries in Africa and 15 in the Americas for which no eligible 454 studies were identified (Figure 2, Table 4). 455

456 We extracted data on 29 zoonotic causes of fever in malaria endemic countries. Among these, the majority (55-2%) were bacteria. The proportion of bacteria is 457 458 significantly greater than expected from the taxonomic distribution of all zoonotic 459 pathogens, which comprise 30.1% bacteria ($\gamma^2 = 26.4$, d.f. = 1, p<0.001, data from (31)) and also contrasts with the taxonomic distribution of emerging zoonoses, which 460 461 are dominated by viruses (13). While this study is unlikely to accurately reflect the 462 true taxonomic distribution of all fever causing zoonoses, this finding does reinforce 463 the clinical importance of endemic bacterial zoonoses and need for greater awareness 464 of these zoonoses, particularly given the availability of effective treatments that could substantially mitigate these disease burdens. 465 466

467 The geographic variation in the distribution of studies by country (figure 2) and region (appendix table S7, figure S2) is likely to be strongly influenced by variation in 468 469 research and publication effort. There is noticeable geographic segregation for some 470 zoonoses, with NTS and SFGR reported more frequently in Africa, and Leptospira 471 spp., *Orientia tsutsugamushi*, and typhus-group rickettsioses (TGR) reported more frequently in South-East Asia (Figure 5).and Western Pacific regions 472 473 (appendix figure S2). For viruses, Lassa virus was reported only in Africa and JEV 474 onlypredominantly in South-East Asia. These geographic differences in the reporting 475 patterns will only partially reflect the true. The distribution of studies cannot be interpreted as an accurate reflection of the underlying distribution andof zoonotic 476 477 pathogens, their prevalence of each pathogen. Diagnostic testing behavior is not 478 uniform and theor clinical importance. The pathogens that are looked for also 479 dependsdepend on factors such as the diagnostic capacity available, existing data, and local assessment of the likely causes of febrile illness in a specific location. The data 480 481 generated in this review cannot be used to formally quantify the under or over 482 representation of different pathogens in different countries but may help indicate 483 potential gaps in what is looked for. Once specificOnce pathogens are identified in 484 specific locations, any location there will likely be improved increased clinical and, 485 patient, and community awareness of those pathogens, as well as improved diagnostic capacity to detect them. In this way, dogma about the 'known' important causes of 486 487 febrile illness in specific locations can arise and contribute to the neglect of other 488 pathogens. The findings of this review can highlight pathogens and locations where 489 these dogmas should be questioned. The relative lack of studies reporting robust 490 diagnoses of illness caused by Leptospira spp. in Africa, for example, is likely to

- 491 reflect a lack of research effort and limited diagnostic capacity rather than a relative 492 absence of clinical leptospirosis in the region (14). Similarly, recent studies indicate 493 that the lack of studies investigating *O. tsutsugamushi* in Africa may be a reflection of 494 a presumed absence of scrub typhus in Africa and a consequent failure to test for 495 *Orientia*, rather than an absence of the pathogen itself, potentially allowing a 496 substantial incidence of scrub typhus to go unrecognized (32,33). The findings of this 497 review may help indicate potential gaps in what is looked for and can highlight 498 pathogens and locations where these dogmas should be questioned. 499
- 500 Figure 4 shows The majority of the comparison 30 zoonotic causes of fever 501 contributing data for this review were bacteria (56.7%). This proportion is greater 502 than expected from the taxonomic distribution of all zoonotic pathogens, which 503 comprise 30.1% bacteria⁴⁴ and also contrasts with the taxonomic distribution of emerging zoonoses, which are dominated by viruses.¹³ This finding reinforces the 504 clinical importance of endemic bacterial zoonoses. The comparisons between the 505 506 number of articles that looked for, diagnosed, and contributed data for each of $\frac{36}{36}$ zoonoses mentioned in the 181 articles analyzed. These three metrics and their 507 508 comparison provide several insights. First, revealing40 zoonoses reveals the range of 509 zoonotic pathogens investigated and providing an indication of indicates the relative investigative effort used for each pathogen. The (figure 3). However, the figures for 510 511 number of articles where a pathogen was looked for but not identified must be 512 interpreted with caution given the high probability of reporting bias and likelihood 513 that studies often omit mention of investigations for pathogens that are not subsequently found. Finally, forhow rarely negative results are reported. For several 514 515 pathogens, the number (and/or proportion) of articles that reported a zoonotic 516 diagnosis of a zoonoses but did not contribute further data for this are non trivial. 517 These articles report diagnosis of zoonoses but data were not extracted as analysis 518 (because the diagnostic approaches described dodid not meet study quality criteria-519 These results demonstrate) are substantial (figure 3). This demonstrates that for many, 520 predominantly bacterial pathogens, suboptimal and/or non-standardized diagnostic 521 tests or imprecise case definitions are in widespread use, highlighthighlighting the 522 challenges of accurately quantifying disease prevalence and comparing studies. 523
- 524 Unfortunately, several factors contribute to the ongoing Persistent challenges of in the 525 diagnosis of febrile patients. These include limited laboratory capacity, reliance on 526 demonstration of seroconversion for confirmed diagnosis of many pathogens (with 527 limited utility for management of acute cases), non sustainable, unsustainable costs 528 associated with more advanced diagnostics diagnostic technologies, and lack of simple 529 and affordable tests for the accurate and timely diagnosis of several zoonotic 530 pathogens. Linked to this In addition, the delays in patient presentation that are typical 531 in many resource limited settings, lead to low magnitude bacteremiabacteraemia at 532 presentation or patients during the immune phase of illness, 533 factors that furtherall limit the sensitivity of culture or PCR-based diagnostic 534 approaches when available. These challenges necessitate syndromic approaches to 535 patient management and broad-spectrum treatment. One specific issue relates to 536 tetracycline use. O. tsutsugamushi and rickettsioses, which this This study identified 537 rickettsioses and O. tsutsugamushi as common causes of fever,. These would both 538 benefit from treatment with tetracyclines, which are not currently included in the 539 Integrated Management of Adolescent and Adult Illness (IMAI) algorithms for septic shock and severe respiratory distress without shock (34).⁴⁵ In light of the extensive 540

- 541 contribution of tetracycline-responsive infections to fever in malaria-endemic
 542 countries, revisions to clinical guidelines may be warranted to suggest the empirical
 543 use of tetracyclines in addition to beta-lactams in those scenarios where the infection
 544 with tetracycline-responsive pathogens could notcannot be excluded.
- 545

554

546 The diversity of pathogens identified in this review add to the existing diagnostic 547 challenges facing clinicians, laboratories, and health systems. To some extent, findings from existing actiology studies can be extrapolated to inform practice in 548 549 other similar countries and settings. This approach may be most valuable for pathogens with well described and stable epidemiology. However, where pathogens 550 show wide spatial and temporal variability in incidence, more locally-specific 551 research efforts will be needed to assess the relative contribution of different zoonoses 552 553 to fever in different settings.

The most common patient population in this review comprised people with 555 556 undifferentiated febrile illness. Figure 6 illustrates the associations between different zoonoses and different clinical presentations. While some zoonotic pathogens were 557 558 associated with specific clinical presentations in addition to fever (e.g. neurological, 559 gastrointestinal, haemorrhagic clinical presentation) in some reports, almost all 560 pathogens were also detected in undifferentiated populations. This suggests that 561 zoonoses commonly linked with specific syndromes (e.g. Crimean Congo 562 haemorrhagic syndrome and JEV) still need to be considered in the differential 563 diagnosis of undifferentiated fever, even in the absence of other specific clinical 564 features. While documented associations between pathogens and specific clinical 565 presentations may assist clinicians in the differential diagnosis of febrile illnesses, the 566 impact of variation in when specific pathogens are tested for must also be remembered when interpreting these data. 567

The findings of this review show that one or more zoonotic causes of fever are likely 568 569 to present a threat to health in all of the countries included in this review. Only a 570 small proportion of the febrile populations included in the study were defined as 571 demographically restricted and most were not clinically differentiated. Even zoonoses 572 commonly linked with specific syndromes (e.g., Crimean-Congo haemorrhagic fever 573 virus and JEV) were diagnosed in undifferentiated populations and should thus be 574 considered in the differential diagnosis of undifferentiated febrile illness. Within 575 populations at risk, it is important that aetiologic studies are followed by 576 epidemiologic risk factor studies to determine whether certain sub-groups are at 577 higher risk for specific zoonotic diseases. Robust febrile illness surveillance systems 578 help inform local epidemiology and febrile illness management, and are also essential 579 for detection of disease outbreaks.⁴⁶

580

581 There are several important limitations to this study. We examined the contribution of 582 zoonotic pathogens to febrile illness only in malaria-endemic countries and excluded 583 articles not available in English from our analysis. Articles The restriction of this 584 review to English language texts will have reduced the probability that studies from 585 French and Spanish speaking countries were only included and may partially account 586 for some gaps, such as the 23 countries in the review if they included valid data on 587 diagnosis of one or more zoonoses. Africa and 15 in the Americas for which no 588 eligible studies were identified. Studies reporting the performance of tests resulting 589 in all negative test results were thus excluded from the analysis. This selection 590 strategy was motivated by the inevitable influence of publication bias and

591 complexities inchallenges of systematically quantifying the non-reporting of either 592 diagnostic test performance or the non-detection of specific pathogens. The findings 593 of this study thus include only populations where zoonoses were identified. 594 Biases in testing practices for different pathogens in different locations and with 595 different clinical febrile presentations will influence the pathogens looked for, 596 detected and reported. The application of diagnostic criteria that are strictly 597 comparable across pathogens is not feasible. in this study. The proportions of 598 febrile illnesses attributable to each zoonotic pathogen (Figure 7) thus apply 599 only for populations where the pathogen is known to be present. In this study, 600 strict diagnostic criteria were applied, preferentially including diagnostic approaches 601 with a high specificity, to minimize the influence of false positives within the analyses. The bias assessments for study representativeness and precision in the 602 603 estimates of proportion of fevers attributable to a given pathogen both reveal that the 604 majority of data points had medium or high risk of one or both types of bias. This 605 emphasizes the need for cautious and essentially non-quantitative interpretation of the 606 data extracted from these studies. Many studies with risk of precision bias due to 607 smaller sample size tended to report the highest prevalences of disease attribution to a given pathogen (figure 5); and, interestingly, these studies were often also classified 608 609 as high risk for representativeness bias. Figure 5 shows clear variation in risk of 610 representativeness bias across pathogens, potentially linked to variation in clinical presentation. For example, the majority of data points for Japanese encephalitis virus 611 and indeed all data points for Leishmania donovanii are classified as high risk of 612 613 representativeness bias. This review focused on studies reporting diagnostic 614 investigation of patient populations that were principally defined by fever (e.g. febrile populations some of whom had one or more zoonoses) and populations principally 615 616 defined by a common aetiological diagnosis were excluded (e.g., populations defined by presence or suspicion of one or more zoonosis, some of whom were febrile). As a 617 618 consequence, this systematic This review therefore had relatively an inherently low sensitivity for studies describing outbreaks, with just 9 included studies described 619 as documenting disease outbreaks (but meeting all study criteria and thus 620 retained). This focus explains, for example, the absence of studies describing the 621 622 2014-2016 Ebola West Africa outbreak-amongst others. Our findings are therefore 623 unlikely to capture the full extent. The design of this review did not allow explicit investigation of morbidity and mortality attributable to co-infections, either of 624 zoonoses with malaria or of multiple zoonoses that cause outbreaks. Co-infections 625 626 are likely to be an important factor underlying both the distribution and prevalence of some zoonotic pathogens, including for example nontyphoidal Salmonella serovars.⁴ 627 628 Serological diagnosis of acute infection based on testing of both acute and 629 convalescent phase serum samples sera is central to the confirmed diagnosis of 630 multiple pathogens included in the study: as. As a consequence, individuals who die prior to the collection of convalescent samples are unlikely to contribute data (in the 631 632 absence of other valid confirmatory test options) and the proportion proportions of 633 fevers attributable to pathogens with high probability of acute fatality will be under-634 estimated and our findings may not fully capture the contribution of zoonoses in 635 lethal febrile illnesses. Furthermore, no validity criteria regarding the timing of 636 sample collection for acute and convalescent samples were imposed, leading potentially to false negative results (e.g., seroconversion not detected because of 637 638 premature convalescent sampling). For these reasons, our findings are unlikely to 639 capture the full extent of morbidity and mortality attributable to zoonoses. 640

641 The data compiled in this review demonstrate the need to consider multiple zoonoses 642 among the potential causes of febrile illnesses in malaria-endemic countries. The 643 diversity of pathogens identified and the geographic variation in their distribution 644 indicates that different Different zoonoses are likely to be important in different settings. Nonetheless, our Our study provides a starting point for improving awareness 645 of first the zoonoses that are known to contribute to febrile illness in different 646 647 malaria-endemic regions and second the fever-causing zoonoses with widespread 648 distribution that should also be considered in patient evaluation. The demonstration of 649 major data gaps should also encourage a more open-minded approach when 650 considering zoonoses as a potential cause of febrile illness. 651 652 Greater research effort is needed to overcome the current paucity of evidence. In 653 addition, untapped Continued efforts are needed to develop multi-pathogen 654 diagnostics, ideally with formats appropriate for point of care use. To avoid 655 perpetuation of self-fulfilling prophesies that can arise when only pathogens tested for 656 (and detected) are assumed to be present, the development and evaluation of such diagnostics should be informed by data describing the pathogens present in specific 657 658 settings and also the wider context. Untapped sources of information on the 659 distribution and occurrence of fever-causing zoonoses almost certainly also exist, particularly in the animal health sector, and. One Health efforts to share data and 660 661 knowledge between animal and human health sectors could help raise clinician 662 awareness of locally-relevant zoonoses, inform history taking, and guide diagnostic 663 and management decision making. Given the diversity Control of pathogens, 664 continued efforts disease in animal populations and prevention of transmission from 665 animals to humans are also neededlikely to be the most effective ways to reduce 666 human disease risk with many zoonoses, necessitating active engagement with 667 populations at risk to develop multi-pathogen diagnostics. This is also important to avoid perpetuation of self-fulfilling prophesies that can arise when only pathogens 668 tested for (and hence detected) are assumed to be present. While there sustainable 669 disease control interventions. There are substantial challenges to clinicians and 670 671 epidemiologists in revealing the true impacts of many zoonoses, the. The enormous 672 global burden of febrile illness and scope for improvements in the diagnosis and treatment of zoonotic pathogens necessitates necessitate efforts to overcome these 673 674 challenges and translate findings into important public health gains. 675

677	Research in Context

676

678 **Evidence before this study**

Fever is one of the most common drivers of healthcare seeking globally and there is
growing awareness of the clinical importance of multiple causes of febrile illness.
Zoonoses are known to be important, but many zoonoses remain systematically
under-reported and there are large and persistent gaps in our understanding of the
human health impacts of zoonoses globally. We conducted a systematic review to
describe the occurrence and distribution of reported zoonotic causes of human febrile
illness in malaria endemic countries.

- 686 We reviewed studies identified in Medline and Embase databases that described
 687 testing of febrile populations for zoonotic pathogens, using a pre-defined list of
 688 eligible zoonotic pathogens and applying quality criteria for diagnostic tests.
 689 Literature searches were run using the OvidSP gateway and were limited to peer-
- 690 reviewed English language articles published in the period 2004 to 2016 inclusive, to
 691 span the period from the described peak of global malaria mortality in 2004 to
- 692 present. The searches were last executed on 26 August 2016.

693 **Added value of this study**

694 This review reveals the widespread occurrence of zoonotic causes of febrile illness,
 695 with a diverse range of pathogens identified. Data were extracted on the zoonotic
 696 pathogens detected and the number of individuals tested and positive for each
 697 pathogen using diagnostics that met study inclusion criteria. We identified 181

- 697 pathogen using diagnostics that met study inclusion criteria. We identified 181
 698 articles, from 46 countries and 7 WHO regions that described diagnosis of 29
 699 zoonoses in febrile people. The majority of zoonoses were bacterial. Our data identify
 700 substantial gaps in the current evidence base and highlight areas for future research
- 701 investment.

702 Implications of all the available evidence

The principal implications of the study findings are that zoonotic pathogens are
ubiquitous but sparsely reported and that many different zoonoses are likely to
contribute to substantial under-documented clinical burdens across the regions
included in this study. Given the crucial importance of knowledge of probable
infecting pathogen to inform clinical management of febrile illness there is a clear
need for further investigation of the zoonotic causes of febrile illness globally to
generate data relevant to clinicians, epidemiologists and health policy makers.

710

712

719

728

733

713 **Contributors**

The author contributions are as follows. Study design: JEBH, MPRKJA, JAC, SC,
KJA-and JACMPR. Searches, screening and article review: JEBH, PH, DVH, GL,
MC, MES, KJA, JB, GAFL, DVH, PH, JAC, SC, and MPR. Data extraction: JEBH
and MC. Data analysis: JEBH. Manuscript writing: JEBH, MC, MES, KJA, JAC, SC,
KJA and MPR.

720 **Declaration of interests**

We declare no competing interest. JEBH reports grants from the Biotechnology and
Biological Sciences Research Council, UK, and collaboration with Arbor biosciences
outside the submitted work. JAC reports grants from United States National Institutes
of Health and Biotechnology and Biological Sciences Research Council, UK. MPR
reports grants from United States National Institute for Allergy and Infectious
Diseases and contracted research with BioFire Defense, LLC, outside the submitted
work. Other authors declare they have no conflicts of interest.

The funders of the study had no role in study design, data collection, data analysis,
data interpretation, or writing of the report. The corresponding author had full access
to all the data in the study and had final responsibility for the decision to submit for
publication.

734 Acknowledgements

735 This work was supported by US National Institutes of Health-National (NIH) Science 736 Foundation Ecology and Evolution of Infectious Disease program (R01 TW009237) 737 and the UK Biotechnology and Biological Sciences Research Council (BBSRC) 738 (BB/J010367). Additional support was provided by: BBSRC grants BB/L018845/1 739 (JAC and JEBH) and BB/L018926/1 (SC, and JAC); Medical Research Council (MRC) grant MR/K500847/1 (GLGAFL); the Leverhulme Royal Society Africa 740 Award AA130131 (JEBH); Wellcome Trust 096400/Z/11/Z (KJA); National Institute 741 742 of Allergy & Infectious Diseases K23AI116869 (MPR), R01AI121378 (JAC) and 743 Fogarty International Center Global Health Fellowship R25TW009343 (MPR). 744 745

746	
747	References
748	
749	1. Crump JA. Typhoid Fever and the challenge of nonmalaria febrile illness in
750	sub-saharan Africa. Clin Infect Dis 2012; 54: 1107-9.
751	2. Feikin DR, Olack B, Bigogo GM, et al. The burden of common infectious
752	disease syndromes at the clinic and household level from population-based
753	surveillance in rural and urban Kenya. PLoS One 2011; 6: e16085.
754	3. Institute for Health Metrics and Evaluation. Global Health Data Exchange.
755	GBD Results Tool 2018 [updated 18 June 2018. Available from: 2018.
756	http://ghdx.healthdata.org/gbd-results-tool- (Accessed 18 June 2018).
757	4. Prasad N, Murdoch DR, Reyburn H, Crump JA. Etiology of Severe Febrile
758	Illnesssevere febrile illness in Lowlow- and Middle-Income Countriesmiddle-income
759	countries: A Systematic Review.systematic review. PLoS One 2015; 10: e0127962.
760	5. Crump JA, Ramadhani HO, Morrissey AB, et al. Invasive bacterial and fungal
761	infections among hospitalized HIV-infected and HIV-uninfected adults and
762	adolescents in northern Tanzania. Clin Infect Dis 2011; 52: 341-8.
763	6. Reyburn H, Mbatia R, Drakeley C_{\pm} et al. Overdiagnosis of malaria in patients
764	with severe febrile illness in Tanzania: a prospective study. 2004; 329 : 1212.
765	7. Chandler CI, Chonya S, Boniface G, Juma K, Reyburn H, Whitty CJ. The
766	importance of context in malaria diagnosis and treatment decisions - a quantitative
767	analysis of observed clinical encounters in Tanzania. Trop Med Int Health 2008;_13:
768	1131-42.
769	8. Amexo M, Tolhurst R, Barnish G, Bates I. Malaria misdiagnosis: effects on
770	the poor and vulnerable. <i>Lancet</i> 2004; 364 : 1896-8.
771	9. Murray CJ, Rosenfeld LC, Lim SS, et al. Global malaria mortality between
772	1980 and 2010: a systematic analysis. <i>Lancet</i> 2012; 379 : 413-31.
773	10. World Health Organization. World Malaria Report 2016 Geneva: WHO
774	Press; 2016 [Available from: <u>http://www.who.int/malaria/publications/world-</u>
775	malaria-report-2016/report/en/- (Accessed 1 June 2018).
776	11. D'Acremont Vr, Lengeler C, Mshinda H, Mtasiwa D, Tanner M, Genton B.
777	Time to move from presumptive malaria treatment to laboratory-confirmed diagnosis
778	and treatment in African children with fever. <u><i>PLoS Med</i></u> 2009; 6 : e252.
779	12. Crump JA, Morrissey AB, Nicholson WL, et al. Etiology of severe non-
780	malaria febrile illness in Northern Tanzania: a prospective cohort study. <i>PLoS Negl</i>
781	Trop Dis 2013; 7: e2324.
782	13. Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease
/83	emergence. Philos Trans R Soc Lond B Biol Sci 2001; 356 : 983-9.
/84 705	14. Allan KJ, Biggs HM, Halliday JEB, et al. Epidemiology of
/85	Leptospirosisleptospirosis in Africa: A Systematic Review systematic review of a
/86	Neglected Zoonosis neglected Zoonosis and a Paradigmparadigm for One Health in
/8/	Affica. 2015; 9: e0003899.
/88	15. Vanderburg S, Rubach MP, Halliday JEB, Cleaveland S, Reddy EA, Crump
/07 700	JA. Epidemiology of <i>Coxiella burnetil</i> infection in Africa: a UneHealth systematic
701	16 Devolo D. Doddook CD. Socolovichi C. et al. Undete en tiel have
702	10. Fatola P, Faudock CD, Socolovschi C ₁ et al. Update on tick-borne rickettsioses around the world: a geographic approach Clin Microbiol Per 2012; 26:
702	nekeusioses around me world, a geographic approach. C <i>in Microbiol Kev</i> 2013; 20:
173	037-702.

794	17. Costa F, Hagan JE, Calcagno J, et al. Global Morbiditymorbidity and
795	Mortality of Leptospirosis leptospirosis: A Systematic Review.systematic
796	review. <i>PLoS Negl Trop Dis</i> 2015; 9 : e0003898.
797	18. Torgerson PR, Hagan JE, Costa F, et al. Global Burden of Leptospirosis:
798	Estimated in Terms of Disability Adjusted Life Years. PLoS Negl Trop Dis 2015; 9:
799	e0004122.
800	19. Maina AN, Farris CM, Odhiambo A, et al. Q Fever, Scrub Typhus, and
801	Rickettsial Diseases diseases in Childrenchildren, Kenya, 2011-2012. Emerg Infect
802	Dis 2016; 22 : 883-6.
803	20. ILRI. Mapping of poverty and likely zoonoses hotspots. Zoonoses Project 4.
804	Report to Department for International Development, UK. Nairobi, Kenya:
805	International Livestock Research Institute,; 2012 [119 pp]. Available from: 2012.
806	http://www.dfid.gov.uk/r4d/pdf/outputs/livestock/ZooMapDFIDreport18June2012FI
807	NALsm.pdf- (Accessed 1 June 2018).
808	21. R Core Team. R: A Language and Environment for Statistical Computing
809	Vienna, Austria2018 [Available from: 2018. http://www.R-project.org- (Accessed 01
810	<u>October 2019).</u>
811	22. WHO. Zoonoses. 2016 [Available from:.
812	http://www.who.int/zoonoses/diseases/en/- (Accessed 01 June 2016).
813	23. OIE. OIE-Listed diseases, infections and infestations in force in 2016. 2016
814	[Available from: http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-
815	<u>2016/- (Accessed 01 Jun 2016).</u>
816	24. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious
817	diseases. 2007; 447 : 279-83.
818	25. World Health Organization. World Malaria Report 2005 Geneva: WHO
819	Press; 2005 [Available from: _
820	http://www.who.int/malaria/publications/atoz/9241593199/en/- (Accessed 01 June
821	<u>2018).</u>
822	26. World Health Organization. WHO regional offices 2018 [Available from:
823	http://www.who.int/about/regions/en/.
824	27. Southeast Asia Infectious Disease Clinical Research Network. Causes and
825	outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional
826	study. <i>Lancet Glob Health</i> 2017; <mark>5:e157-e67.</mark>
827	28. D'Acremont V, Kilowoko M, Kyungu E et al. Beyond malariacauses of fever
828	in outpatient Tanzanian children. <i>N Engl J Med</i> 2014; 370 :809-17.
829	29. Wang TH, Wei KC, Jiang DD, Chiu CH, Chang SC, Wang JD. Unexplained
830	deaths and critical illnesses of suspected infectious cause, Taiwan, 2000-2005. Emerg
831	Infect Dis 2008;14:1653-5.
832	30. Wickham H. ggplot2: Elegant Graphics for Data Analysis 2009 [Available
833	trom: <u>http://ggplot2.org</u> .
834	31. Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their
835	domestic mammals: pathogen characteristics, host range and the risk of emergence.
836	<u>Frittes Frans K Soc Lond B Biol Sci 2001;</u> 330:991 9.
837	32. Walker DH. Scrub Typnus - Scientific Neglect, Ever-Widening Impact. N
030	Engl J Weitzel T. Dittrich S. Longy Let al. Endemic Same Tembra in Seatth America
039	35. Wenzel 1, Durren 5, Lopez J et al. Endemic Scrub Typnus in South America.
04U Q/1	<u>17 Engl J Wild 2010, 373.734 01.</u> 24 Dubach MD Mara VD Partlatt IA Crump IA Eticlogica of illness among
041	34. Rubach MF, Maio VF, Darlieu JA, Crump JA. Ellologies of Hiness among
042	parients meeting integrated management of adorescent and adult inness district

843	elinician manual criteria for severe infections in northern Tanzania: implications for
844	empiric antimicrobial therapy. Am J Trop Med Hyg 2015:92:454-62.
845	3526. Centers for Disease Control and Prevention. Leptospirosis (Leptospira
846	interrogans) 2013 Case Definition. 2013 [Available from:
847	https://wwwn.cdc.gov/nndss/conditions/leptospirosis/case-definition/2013/- (Accessed
848	<u>12 June).</u>
849	<u>3627</u> . Centers for Disease Control and Prevention. Hantavirus Pulmonary Syndrome
850	(HPS) Case Definition. 1996 [Available from:.
851	https://www.cdc.gov/hantavirus/health-care-workers/hps-case-definition.html-
852	(Accessed 12 Jun).
853	3728. Centers for Disease Control and Prevention. Arboviral Diseases, Neroinvasive
854	and Non-neuroinvasive 2015 Case definition. 2015 [Available from:.
855	https://wwwn.cdc.gov/nndss/conditions/west-nile-virus-disease/case-definition/2015/-
856	(Accessed 12 June).
857	<u>3829</u> . Centers for Disease Control and Prevention. Rabies, Human 2011 Case
858	Definition. 2011 <u>[Available_from:</u> <u>https://wwwn.cdc.gov/nndss/conditions/rabies-</u>
859	human/case-definition/2011/- (Accessed 12 June).
860	<u>3930</u> . Broadhurst MJ, Kelly JD, Miller A, et al. ReEBOV Antigen Rapid Test kit for
861	point-of-care and laboratory-based testing for Ebola virus disease: a field validation
862	study. Lancet 2015; 386: 867-74.
863	40 <u>31</u> . Centers for Disease Control and Prevention. Viral Hemorrhagic Fever (VHF)
864	2011 Case Definition. 2011 [Available from:.
865	https://wwwn.cdc.gov/nndss/conditions/viral-hemorrhagic-fever/case-
866	definition/2011/- (Accessed 12 June).
867	41 <u>32</u> . Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. Laboratory
868	diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with
869	recombinant proteins. Clin Vaccine Immunol 2006; 13: 444-51.
870	42 <u>33</u> . Bausch DG, Rollin PE, Demby AH, et al. Diagnosis and clinical virology of
871	Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect
872	fluorescent-antibody test, and virus isolation. J Clin Microbiol 2000; 38: 2670-7.
873	43 <u>34</u> . Centers for Disease Control and Prevention. Rift Valley Fever (RVF).
874	Diagnosis. 2013 <u>[Available from: https://www.cdc.gov/vhf/rvf/diagnosis/index.html</u> -
875	(Accessed 12 June).
876	44 <u>35</u> . Solomon T, Thao TT, Lewthwaite P, et al. A cohort study to assess the new
877	WHO Japanese encephalitis surveillance standards. Bull World Health Organ 2008;
878	86 :_178-86.
879	<u>36. World Health Organization. WHO regional offices. 2018.</u>
880	http://www.who.int/about/regions/en/ (Accessed 12 June 2018).
881	<u>37.</u> Southeast Asia Infectious Disease Clinical Research Network. Causes and
882	outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional
883	study. Lancet Glob Health 2017;45. Aarsland SJ, Castellanos Gonzalez A, Lockamy
884	<u>KP_5: e157-e67.</u>
885	<u>38.</u> D'Acremont V, Kilowoko M, Kyungu E, et al. Treatable bacterial infections
886	are underrecognized Beyond malariacauses of fever in Ethiopian children. Am J
887	<i>Trop Med Hyg</i> 2012; 87 :128-33.
888	46. Adurthi S, Sahoo T, Chakka K et al. Acute toxoplasmosis in nonstem cell
889	transplant patients with baematological malignancies: a study from a regional cancer
	tunsprant patents with internationogrear manginancies, a study from a regional cancer

891 47. Afifi S, Earhart K, Azab MA et al. Hospital-based surveillance for acute 892 febrile illness in Egypt: a focus on community-acquired bloodstream infections. Am J 893 Trop Med Hyg 2005;73:392-9. 894 48. Aguilar PV, Robich RM, Turell MJ et al. Endemic eastern equine encephalitis 895 in the Amazon region of Peru. Am J Trop Med Hyg 2007;76:293-8. 896 49. Akinyemi KO, Bamiro BS, Coker AO. Salmonellosis in Lagos, Nigeria: 897 incidence of *Plasmodium falciparum*-associated co-infection, patterns of 898 antimicrobial resistance, and emergence of reduced susceptibility to fluoroquinolones. 899 J Hlth Popul Nutr 2007;25:351-8. Akinyemi KO, Iwalokun BA, Alafe OO, Mudashiru SA, Fakorede C. bla 900 50. 901 CTX-M-I group extended spectrum beta lactamase-producing Salmonella typhi from 902 hospitalized patients in Lagos, Nigeria. Infect Drug Resist 2015;8:99-106. 903 - Alam MM, Khurshid A, Sharif S et al. Genetic analysis and epidemiology of 51. 904 Crimean Congo Hemorrhagic fever viruses in Baluchistan province of Pakistan. BMC 905 Infect Dis 2013;13:201. 906 52. Albuquerque Filho AP, Araujo JG, Souza IQ et al. Validation of a case definition for leptospirosis diagnosis in patients with acute severe febrile disease 907 908 admitted in reference hospitals at the State of Pernambuco, Brazil. Rev Soc Bras Med 909 Trop 2011;44:735-9. 53. Al-Emran HM, Krumkamp R, Dekker DM et al. Validation and Identification 910 911 of Invasive Salmonella Serotypes in Sub-Saharan Africa by Multiplex Polymerase 912 Chain Reaction. Clin Infect Dis 2016;62 Suppl 1:S80-2. 913 54. Al-Emran HM, Eibach D, Krumkamp R et al. A Multicountry Molecular 914 Analysis of Salmonella enterica Serovar Typhi With Reduced Susceptibility to 915 Ciprofloxacin in Sub-Saharan Africa. Clin Infect Dis 2016;62 Suppl 1:S42-6. 916 55. Ali N. Chotani RA, Anwar M. Nadeem M, Karamat KA, Tarig WU. A 917 congo haemorrhagic fever outbreak in northern Balochistan. J Coll crimean 918 Physicians Surg Pak 2007;17:477-81. 919 56. Andualem G, Abebe T, Kebede N, Gebre-Selassie S, Mihret A, Alemayehu H. 920 A comparative study of Widal test with blood culture in the diagnosis of typhoid fever 921 in febrile patients. BMC Res Notes 2014;7:653. 57. Anga G, Barnabas R, Kaminiel O et al. The aetiology, clinical presentations 922 923 and outcome of febrile encephalopathy in children in Papua New Guinea. Ann Trop 924 Paediatr 2010;30:109-18. 925 58. Angelakis E, Mediannikov O, Socolovschi C et al. Coxiella burnetii-positive 926 PCR in febrile patients in rural and urban Africa. Int J Infect Dis 2014;28:107-10. 927 59. Armien B, Pascale JM, Munoz C et al. Hantavirus fever without pulmonary 928 syndrome in Panama. Am J Trop Med Hyg 2013;89:489-94. 60. Barua A, Kumar A, Thavaselvam D et al. Isolation & characterization of 929 930 Brucella melitensis isolated from patients suspected for human brucellosis in India. 931 Indian J Med Res 2016;143:652-8. 932 61. Bengre ML, Prabhu MV, Arun S, Prasad K, Baht KG. Evaluation of the 933 Multinational Association for Supportive Care in Cancer (MASCC) Score for 934 Identifying Low Risk Febrile Neutropaenic Patients at a South Indian Tertiary Care 935 Centre. J Clin Diagn Res 2012;6:839-43. 936 62. Biggs HM, Bui DM, Galloway RL et al. Leptospirosis among hospitalized 937 febrile patients in northern Tanzania. Am J Trop Med Hyg 2011;85:275-81. 938 63. Biggs HM, Lester R, Nadjm B et al. Invasive Salmonella infections in areas of 939 high and low malaria transmission intensity in Tanzania. Clin Infect Dis 2014;58:638-940 47.

941	64. Blacksell SD, Smythe L, Phetsouvanh R et al. Limited diagnostic capacities of
942	two commercial assays for the detection of Leptospira immunoglobulin M antibodies
943	in Laos. Clin Vaccine Immunol 2006;13:1166-9.
944	65. Blacksell SD, Sharma NP, Phumratanaprapin W et al. Serological and blood
945	culture investigations of Nepalese fever patients. Trans R Soc Trop Med Hyg
946	2007;101:686-90.
947	66. Blacksell SD, Jenjaroen K, Phetsouvanh R et al. Accuracy of rapid IgM-based
948	immunochromatographic and immunoblot assays for diagnosis of acute scrub typhus
949	and murine typhus infections in Laos. Am J Trop Med Hyg 2010;83:365-9.
950	67. Blacksell SD, Lim C, Tanganuchitcharnchai A et al. Optimal Cutoff and
951	Accuracy of an IgM Enzyme-Linked Immunosorbent Assay for Diagnosis of Acute
952	Scrub Typhus in Northern Thailand: an Alternative Reference Method to the IgM
953	Immunofluorescence Assay. J Clin Microbiol 2016;54:1472-8.
954	68. Blacksell SD, Tanganuchitcharnchai A, Nawtaisong P et al. Diagnostic
955	Accuracy of the InBios Scrub Typhus Detect Enzyme-Linked Immunoassay for the
956	Detection of IgM Antibodies in Northern Thailand. Clin Vaccine Immunol
957	2016;23:148-54.
958	69. Boisen ML, Schieffelin JS, Goba A et al. Multiple Circulating Infections Can
959	Mimic the Early Stages of Viral Hemorrhagic Fevers and Possible Human Exposure
960	to Filoviruses in Sierra Leone Prior to the 2014 Outbreak. Viral Immunol 2015;28:19-
961	31.
962	70. Boonsilp S, Thaipadungpanit J, Amornchai P et al. Molecular detection and
963	speciation of pathogenic Leptospira spp. in blood from patients with culture-negative
964	leptospirosis. BMC Infect Dis 2011;11:338.
965	71. Bottieau E, Clerinx J, Vlieghe E et al. Epidemiology and outcome of Shigella,
966	Salmonella and Campylobacter infections in travellers returning from the tropics with
967	fever and diarrhoea. Acta Clin Belg 2011;66:191-5.
968	72. Brooks WA, Hossain A, Goswami D et al. Bacteremic typhoid fever in
969	children in an urban slum, Bangladesh. Emerg Infect Dis 2005;11:326-9.
970	73. Castillo Ore RM, Forshey BM, Huaman A et al. Serologic evidence for human
971	hantavirus infection in Peru. Vector Borne Zoonotic Dis 2012;12:683-9.
972	74. Chadha MS, Comer JA, Lowe L et al. Nipah virus associated encephalitis
973	outbreak, Siliguri, India. <i>Emerg Infect Dis</i> 2006; 12 :235-40.
974	75. Chandy S, Mitra S, Sathish N et al. A pilot study for serological evidence of
975	hantavirus infection in human population in south India. Indian J Med Res
976	2005;122:211-5.
977	76. Chandy S, Yoshimatsu K, Boorugu HK et al. Acute febrile illness caused by
978	hantavirus: serological and molecular evidence from India. Trans R Soc Trop Med
979	<i>Hyg</i> 2009; 103 :407-12.
980	77. Chansamouth V, Thammasack S, Phetsouvanh R et al. The Aetiologies and
981	Impact of Fever in Pregnant Inpatients in Vientiane, Laos. PLoS Negl Trop Dis
982	2016;10:e0004577.
983	78. Chatterjee S, Chattopadhyay D, Bhattacharya MK, Mukherjee B.
984	Serosurveillance for Japanese encephalitis in children in several districts of West
985	Bengal, India. Acta Paediatr 2004;93:390-3.
986	79. Chen ZH, Qin XC, Song R et al. Co-circulation of multiple hemorrhagic fever
987	diseases with distinct clinical characteristics in Dandong, China. PLoS One
988	2014;9:e89896.

989 80. Chheng K, Carter MJ, Emary K et al. A prospective study of the causes of 990 febrile illness requiring hospitalization in children in Cambodia. PLoS One 991 2013:8:e60634. 992 81. Chikeka I, Matute AJ, Dumler JS, Woods CW, Mayorga O, Reller ME. Use of 993 Peptide-Based Enzyme-Linked Immunosorbent Assay followed -bv 994 Immunofluorescence Assay To Document Ehrlichia chaffeensis as a Cause of Febrile 995 Illness in Nicaragua. J Clin Microbiol 2016;54:1581-5. 996 82. Chinikar S, Javadi A, Ataei B et al. Detection of West Nile virus genome and 997 specific antibodies in Iranian encephalitis patients. *Epidemiol Infect* 2012;140:1525-9. 998 83. Chiriboga J, Barragan V, Arroyo G et al. High Prevalence of Intermediate 999 Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerg 1000 Infect Dis 2015;21:2141-7. 1001 Chrispal A, Boorugu H, Gopinath KG et al. Acute undifferentiated febrile 84. 1002 illness in adult hospitalized patients: the disease spectrum and diagnostic predictors -1003 an experience from a tertiary care hospital in South India. Trop Doct 2010;40:230-4. 85. Ciftdogan DY, Bayram N, Vardar F. Brucellosis as a cause of fever of 1004 1005 unknown origin in children admitted to a tertiary hospital in the Aegean region of 1006 Turkey. Vector Borne Zoonotic Dis 2011;11:1037-40. 1007 86. Cohen AL, Dowell SF, Nisalak A, Mammen MP, Jr., Petkanchanapong W, 1008 Fisk TL. Rapid diagnostic tests for dengue and leptospirosis: antibody detection is 1009 insensitive at presentation. Trop Med Int Health 2007;12:47-51. 1010 - Crump JA, Ramadhani HO, Morrissey AB et al. Invasive bacterial and fungal 87. 1011 infections among hospitalized HIV-infected and HIV-uninfected children and infants 1012 in northern Tanzania. Trop Med Int Health 2011;16:830-7. 1013 88. Cruz CD, Forshey BM, Vallejo E et al. Novel strain of Andes virus associated 1014 with fatal human infection, central Bolivia. Emerg Infect Dis 2012;18:750-7. -Dassanayake DL, Wimalaratna H, Agampodi SB, Liyanapathirana VC, 1015 89 Piyarathna TA, Goonapienuwala BL. Evaluation of surveillance case definition in the 1016 1017 diagnosis of leptospirosis, using the Microscopic Agglutination Test: a validation study. BMC Infect Dis 2009:9:48. 1018 1019 90. Davies DH, Jain A, Nakajima R et al. Serodiagnosis of Acute Typhoid Fever 1020 in Nigerian Pediatric Cases by Detection of Serum IgA and IgG against Hemolysin E and Lipopolysaccharide. Am J Trop Med Hyg 2016;95:431-9. 1021 1022 91. Degarege A, Legesse M, Medhin G, Animut A, Erko B. Malaria and related 1023 outcomes in patients with intestinal helminths: a cross-sectional study. BMC Infect 1024 Dis 2012;12:291. 92. Dong B, Liang D, Lin M et al. Bacterial etiologies of five core syndromes: 1025 1026 laboratory-based syndromic surveillance conducted in Guangxi, China. PLoS One 1027 2014:9:e110876. 1028 93. dos Santos FC, do Nascimento EM, Katz G et al. Brazilian spotted fever: real-1029 time PCR for diagnosis of fatal cases. Ticks Tick Borne Dis 2012:3:312-4. 1030 - Ehichioya DU, Asogun DA, Ehimuan J et al. Hospital-based surveillance for 94 Lassa fever in Edo State, Nigeria, 2005-2008. Trop Med Int Health 2012;17:1001-4. 1031 1032 95. Eibach D, Belmar Campos C, Krumkamp R et al. Extended spectrum betalactamase producing Enterobacteriaceae causing bloodstream infections in rural 1033 1034 Ghana, 2007-2012. Int J Med Microbiol 2016;306:249-54. 1035 El-Mahallawy H, Sidhom I, El-Din NHA, Zamzam M, El-Lamie MM. 96. 1036 Clinical and microbiologic determinants of serious bloodstream infections in Egyptian 1037 pediatric cancer patients: a one-year study. Int J Infect Dis 2005;9:43-51.
 zoonosis in Egypt. Acta Trop 2014;140:188-92. 98. Ellis RD, Fukuda MM, McDaniel P et al. Causes of fever in-adults on the Myanama border. Am. J Trop Med Hyg 2006;74:108-13. 99. Elyan DS, Moustafa L, Noomal B et al. Serological evidence of Flaviviruses infection among acute febrile illness patients in Afghanistan. J Infect Der Comm 2014;8:1176-80. 100. Eremeeva ME, Berganza E, Suarez G et al. Investigation of an outbreak of ricketisal febrile illness in Guatemala, 2007. Int J Infect Dav 2013;17:e304-11. 101. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA. Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000 2007. PLoS Negl Trop Dis 2010;4:e787. 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus Borrelia adgetrica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015;93:1070-3. 104. Gasem MH, Wagemar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever. Indonesia. <i>Emerg. Infect Dis</i> 2009;15:975-7. 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic Intracellular Infection in HIV infected adults: an 1060 emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;59:53-62. 106. Hailu A, Schoone GJ. Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48:52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;176:103-5. 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murin	1038	97. Elhelw RA, El-Enbaawy MI, Samir A. Lyme borreliosis: A neglected
 98.—Ellis ŘĎ, Fukuda MM, McDaniel P et al. Causes of fever in adults on the Thai Myanmar border. Am J Trop Med Hyg 2006;74:108-13. 99.—Elyan DS, Moustafa L, Noormal B et al. Serological evidence of Flaviviruses infection among acute febrile illness patients in Afghanistan. J Infect Dev Countr 2014;8:1176:80. 90.—Ereneva ME, Berganza E, Suarez G et al. Investigation of an outbreak of ricketusial febrile illness in Guatemala, 2007. Int J Infect Dis 2013;17:e304-11. 101.—Fradeel MA, Wasty MO, Pimentel G, Klena JD, Mahoney FJ, Haighe RA, 102.—Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of aurveillance and clinical settings in Egypt. 2006;27:975-81. 102.—Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of aurveillance and clinical settings in Egypt. 2006;27:975-81. 103.—Fotos Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- Bome Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria Am J Trop Med Hyg 2015;93:1070-3. 104.—Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as 105.—Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid almonellac establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;59:57-57. 105.—Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid almonellac establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;59:57-62. 105.—Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellac establish systemic Dirtro Et al. Field evaluation of a fast anti. <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;16:925-62. 106.—Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti. <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;18: 52. 107.—Hamilton LR, G	1039	zoonosis in Egypt. Acta Trop 2014; 140 :188-92.
 Thai Myanmar border. Am J Trop Med Hyg 2006;74:108-13. 99. Elyan DS, Moustafa L, Noormal B et al. Serological evidence of Flaviviruses infection among acute febrile illness-patients in Afghanistan. J Infect Dev Countr 2014;8:1176-80. 100. Eremceva ME, Berganza E, Suarez G et al. Investigation of an outbreak of ickettsial febrile illnesse in Guatemala, 2007. Int J Infect Div 2013;17:e304-11. 101. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA. Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis in survillance and clinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesse: in Western South America, 2000 2007. PLoS Negl Trop Div 2004;4:e787. 103. Fotso-Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus Borrelia edgerica in a Patient with Prolonged Fever in Oran; Algenia Am J Trop Med Hyg 2015;93:1707-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Div 2009;15:975-7. 105. Gordon MA, Kankwatina AM, Mwafuliraw G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. Clin Infect Div 2010;50:93-62. 104. Hamiton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, DCR for Hole, Habi A, Schoone GJ, Diro E et al. Field evaluation of a fast anti Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52. 107. Humiton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, DCR for Hole 4 agid diagnosis of acute Q Ever at a combat support hospital in Iraq. Mil Med 2011;176:103-5. 108. Hen S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among for thele Subjects Aged below 20 Years in Kampong Cham Communi	1040	98. Ellis RD, Fukuda MM, McDaniel P et al. Causes of fever in adults on the
 99.—Elyan DS, Moustafa L, Noormal B et al. Serological evidence of Flaviviruses infection among acute febrile illness patients in Afghanistan. J Infect Dev Countr 2014 2014;8:1176-80. 100.—Eremeeva ME, Berganza E, Suarez G et al. Investigation of an outbreak of rickettsial febrile illness in Guatemala, 2007. Int J Infect Div 2013;17:e304 11. 101.—Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA. Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102.—Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000 2007. PLoS Negl Trop Dis 2010;4:e787. 103.—Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria Am J Trop Med Hyg 2015;93:1070-3. 104.—Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Div 2009;15:975-7. 105.—Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic—intracellular infection in HIV infected adults: an emerging disease pathogenesis. Clin Infect Dis 2010;59:93:26.20. 106.—Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;126:103-8. 107.—Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;14:61:03-5. 106.—Hen S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007 2009. PLoS One 2016;11:e0151555. 107.—Hamilton LR, George DL, Scoville SL, Hospenthal DR, Cirif	1041	Thai Myanmar border. Am J Trop Med Hyg 2006;74:108-13.
 infection among acute febrile illness patients in Afghanistan. J Infect Dev Countr 2014;8:1176-80. 1006 — Eremeva ME, Berganza E, Suarez G et al. Investigation of an outbreak of rickettsial febrile illness in Guatemala, 2007. Int J Infect Dir 2013;17:e304 11. 101. — Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Haijeh RA. Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis of uverillance and clinical settings in Egypt. 2006;27:075-81. 102. — Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000 2007. PLoS Negl Trop Dis 2010;4:e787. 103. — Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, for Gran and H, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Dis 2009;15:975-7. 105. Hot, Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Dis 2009;15:975-7. 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellac establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. Clin Infect Dis 2010;5:60:57.62. 106. — Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52. 107. — Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2007:2009. PLoS One 2016;11:e0151555. 106 108. — Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007:2009. PLoS One 2016;11:e0151555. 107 110. — Hidalgo M, Salguero E, de la O	1042	99. Elyan DS, Moustafa L, Noormal B et al. Serological evidence of Flaviviruses
 2014;8:1176-80. 100. Eremeeva ME, Berganza E, Suarez G et al. Investigation of an outbreak of rickettisal febrile illness in Guatemala, 2007. <i>Int J Infect Dis</i> 2013;17:e304-11. 101. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA, Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus. <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, Algeria. <i>Am J Trop Med Hyg</i> 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 105. Gordon MA, Kankwaira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in 1HV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 106. Haitu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmanii</i> antibody detection assay in Ethiopia. Tram <i>R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007 2009. <i>PLoS One</i> 2016;11:e0151555. 109. Hidalgo M, Montoya V, Martinez A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 110. Hidalgo M, Montoya V, Martinez A et al. Retrospective serosurvey of leptospiro	1043	infection among acute febrile illness patients in Afghanistan. J Infect Dev Countr
 100. Eremeeva ME, Berganza E, Suarez G et al. Investigation of an outbreak of rickettsial febrile illness in Guatemala, 2007. <i>Int J Infect Dis</i> 2013;17:20304-11. 104. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney EJ, Hajjeh RA. Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America. 2000-2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103. 103. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America. 2000 2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 1053. 104. Gasem MH, Wagenau JF, Goris MG et al. Murine typhus and leptospirosis a reauses of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 1054. Gordon MA, Kankwaira AM, Mwafulirwa G et al. Invasive non typhoid sulmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease puthogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 1061. 106. Hailt A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1065 1064. Hem S, Ly S, Votsi Let al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodin, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1079. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2006;78:321-2. 1107. Hidalgo M, Salguero E, de la Ossa A et al. Retrospective serosurvey of leptospirosis-among pa	1044	2014;8:1176-80.
 rickettsial febrile illness in Guatemala, 2007. Int J Infect Dis 2013;17:e304-11. 101. Fadeel MA, Wasty MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA, Rapid enzyme linked immunosorbent assay for the diagnosis of human brueellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000 2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- Borne Candidatus. <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 105. Gordon MA, Kankwaira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-Leishmania antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med</i> Hyg 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 106. Hom S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among febrile Subjeets Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 107. Hidalgo M, Montoya V, Martinez A et al. Short report: Murine typhus in Cladas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 107. Hidalgo M, Montoya V, Martinez A et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 107. Hidalgo M, Montoya V, Martinez A et	1045	100. Eremeeva ME, Berganza E, Suarez G et al. Investigation of an outbreak of
 101. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA. Rapid enzyme linked immunosorbent assay for the diagnosis of human brucellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute fabrile illnesses in Western South America, 2000-2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- Borne Candidatus <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, Algeria. <i>Am J Trop Med Hyg</i> 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:935-62. 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti. <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:148-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 108. 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:21-2. 107. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Na J Trop Med Hyg</i> 2007;101:707-13. 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Negal-during 1980-2006;20:6;38:139-48. 114. Jismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptopirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ, Etiologies of acut	1046	rickettsial febrile illness in Guatemala, 2007. Int J Infect Dis 2013;17:e304-11.
 Rapid enzyme linked immunosorbent assay for the diagnosis of human brueellosis in surveillance and clinical settings in Egypt. 2006;27:975-81. 102.—Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute fabrile illnesses in Western South America, 2000-2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103.—Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, Algeria. <i>Am J Trop Med Hyg</i> 2015;93:1070-3. 104.—Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 105.—Gordon MA, Kankwatira AM, Mwafulinwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;5:00:100:48-52. 106.—Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107.—Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 108.—Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:s0151555. 109.—Hidalgo M, Montoya V, Martinez A et al. Short report: Murine typhus in Gladas, Colombia. <i>Neutro Hyg</i> 2008;78:321-2. 107.—Hidalgo M, Montoya V, Martinez A et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 113.—Joshi DD, Sharma M, Bhandari S, Visceral leishmaniasis in Nepal-during 1980:2006.2006;38:139-48. 114.—Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in a	1047	101. Fadeel MA, Wasfy MO, Pimentel G, Klena JD, Mahoney FJ, Hajjeh RA.
 surveillance and elinical settings in Egypt. 2006;27:975-81. 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015;93:1070-3. 104. Gasem MH, Wagnaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Inaview non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;59:953-62. 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-Leishmanici antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffuh ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e015:1555. 107. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 110. Hidalgo M, Montoya Y, Martinez A et al. Fiea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 111. Jsmail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 112. Jonnings GJ, Hajjch RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R So</i>	1048	Rapid enzyme-linked immunosorbent assay for the diagnosis of human brucellosis in
 1050 102. Forshey BM, Guevara C, Laguna Torres VA et al. Arboviral etiologies of acute febrile illnesses in Western South America, 2000-2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- Borne Candidatus <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, Algeria. <i>Am J Trop Med Hyg</i> 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infact Dis</i> 2009;15:975-7. 1058 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infact Dis</i> 2010;50:953-62. 106. Hailt A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2007:2009. <i>PLoS One</i> 2016;11:e0151555. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007:2009. <i>PLoS One</i> 2016;11:e0151555. 107. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 107. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trams R</i>	1049	surveillance and clinical settings in Egypt. 2006;27:975-81.
 acute febrile illnesses in Western South America, 2000 2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. acute febrile illnesses in Western South America, 2000 2007. <i>PLoS Negl Trop Dis</i> 2010;4:e787. 1053 H03. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, Algeria. <i>Am J Trop Med Hyg</i> 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 1058 H04. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 1058 H05. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clim Infect Dis</i> 2010;50:953-62. 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1069 H08. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 H09. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Celombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 107. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombin. <i>Vector Borne Zonotic Dis</i> 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness as a cause of acute feb	1050	102. Forshey BM, Guevara C, Laguna-Torres VA et al. Arboviral etiologies of
 2010;4:e787. 2010;4:e787. 1053 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D, Blood-Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015;93:1070-3. 1054 1055 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Dis 2009;15:975-7. 1055 1056. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. Clin Infect Dis 2010;50:953-62. 1061 1062. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;10:48-52. 1063 1064 1064 1074. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. PLoS One-2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caddas, Colombia. Am J Trop Med Hyg 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2007;10:13:13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;10:707-13. 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006.2006;38:139-48. 114	1051	acute febrile illnesses in Western South America, 2000-2007. PLoS Negl Trop Dis
 1053 103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood- 1054 Borne Candidatus <i>Borrelia algerica</i> in a Patient with Prolonged Fever in Oran, 1055 Algeria. <i>Am J Trop Med Hyg</i> 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as eauses of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 1058 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 1061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brueellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 113. Joshi DD, Sharma M, Bhandari S. Viscer	1052	2010;4:e787.
 Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015;93:1070-3. 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infact Dis 2009;15:975-7. 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. Clin Infect Dis 2010;50:953-62. 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007 2009. PLoS One 2016;11:e0151555. 1071 Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. Am J Trop Med Hyg 2008;78:321-2. 1071 Hi. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. 1076 H2. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 113. Joshi DD, Sharma M, Banadari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1081 H5. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non	1053	103. Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-
 Algeria. Am J Trop Med Hyg 2015;93:1070-3. I056 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Dis 2009;15:975-7. I055. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive-non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. Clin Infect Dis 2010;50:953-62. I061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52. I061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52. I063 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;176:103-5. I066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007 2009. PLoS One 2016;11:e0151555. I069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caddas, Colombia. Am J Trop Med Hyg 2008;78:321-2. I10. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94. I11. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness an depatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. I076 112. Jennings GJ, Haijeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. I13. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980:2006.2006;38:139-48. I080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presen	1054	Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran,
 1056 104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009;15:975-7. 1058 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 1061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast-anti-<i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 1063 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007 2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 H10. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zonotic Dis</i> 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Seypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 113. Joshi DD, Sharma M, Bhandari S, Visceral leishmaniasis in Nepal during 1980-2006;2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 114. Joshi R, Mishra PK, Joshi D et al. Clinical pr	1055	Algeria. Am J Trop Med Hyg 2015;93:1070-3.
 causes of acute undifferentiated fever, Indonesia, Emerg Infect Dis 2009;15:975-7. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV infected adults: an emerging disease pathogenesis. Clin Infect Dis 2010;50:953-62. Hof. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-Leishmania antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52. Hof. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. Mil Med 2011;176:103-5. Hof. Hem S, Ly S, Votsi L et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. PLoS One 2016;11:e0151555. Hof. Hudago M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. Am J Trop Med Hyg 2008;78:321-2. Hu. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94. Hu. Himal TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. H12. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. H3. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980 2006. 2006;38:139-48. H14. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. H15. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1056	104. Gasem MH, Wagenaar JF, Goris MG et al. Murine typhus and leptospirosis as
 1058 105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 1061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 1063 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Haijeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006.2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute	1057	causes of acute undifferentiated fever, Indonesia. <i>Emerg Infect Dis</i> 2009; 15 :975-7.
 salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 1061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-<i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME, PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in 1070 Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> <i>Trop Med Hyg</i> 2006;75:1085-9. 112. Jennings GJ, Haijeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal-during 1980-2006.2006;38:139-48. 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of sc	1058	105. Gordon MA, Kankwatira AM, Mwafulirwa G et al. Invasive non typhoid
 emerging disease pathogenesis. <i>Clin Infect Dis</i> 2010;50:953-62. 1061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti-<i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48-52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea-borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1059	salmonellae establish systemic intracellular infection in HIV-infected adults: an
 1061 106. Hailu A, Schoone GJ, Diro E et al. Field evaluation of a fast anti <i>Leishmania</i> antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48–52. 1063 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007 2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980 2006, 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1060	emerging disease pathogenesis. Clin Infect Dis 2010;50:953-62.
 antibody detection assay in Ethiopia. <i>Trans R Soc Trop Med Hyg</i> 2006;100:48–52. 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103–5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of 1074 leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006.2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area, <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1061	106. Hailu A. Schoone GJ. Diro E et al. Field evaluation of a fast anti-Leishmania
 1063 107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among rebrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006;206;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1062	antibody detection assay in Ethiopia. Trans R Soc Trop Med Hyg 2006;100:48-52.
 1064 rapid diagnosis of acute Q fever at a combat support hospital in Iraq. <i>Mil Med</i> 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among 1067 Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in 1070 Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of 1074 leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> 1075 <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute 1077 febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1063	107. Hamilton LR, George DL, Scoville SL, Hospenthal DR, Griffith ME. PCR for
 1065 2011;176:103-5. 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980 2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1064	rapid diagnosis of acute O fever at a combat support hospital in Irag. Mil Med
 1066 108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea-borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne</i> Zoonotic Dis 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006.2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1065	2011:176:103-5.
 1067 Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007-2009. <i>PLoS One</i> 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. <i>Am J Trop Med Hyg</i> 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> 1075 <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1066	108. Hem S, Ly S, Votsi I et al. Estimating the Burden of Leptospirosis among
 1068 2007-2009. PLoS One 2016;11:e0151555. 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. Am J Trop Med Hyg 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea-borne rickettsioses in the north of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1067	Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia,
 1069 109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in Caldas, Colombia. Am J Trop Med Hyg 2008;78:321-2. 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea-borne rickettsioses in the north of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980 2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1068	2007-2009. PLoS One 2016;11:e0151555.
 1070 Caldas, Colombia. Am J Trop Med Hyg 2008;78:321-2. 1071 H10. Hidalgo M, Montoya V, Martinez A et al. Flea-borne rickettsioses in the north 1072 of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94. 1073 H1. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of 1074 leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J 1075 Trop Med Hyg 2006;75:1085-9. 1076 H12. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute 1077 febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 1078 H13. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 H14. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1083 H15. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1069	109. Hidalgo M, Salguero E, de la Ossa A et al. Short report: Murine typhus in
 1071 110. Hidalgo M, Montoya V, Martinez A et al. Flea-borne rickettsioses in the north of Caldas province, Colombia. <i>Vector Borne Zoonotic Dis</i> 2013;13:289-94. 1073 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. <i>Am J</i> 1075 <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006.2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1070	Caldas, Colombia. Am J Trop Med Hyg 2008;78:321-2.
 of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94. 111. Ismail TF, Wasfy MO, Abdul Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1071	110. Hidalgo M, Montova V, Martinez A et al. Flea-borne rickettsioses in the north
 1073 111. Ismail TF, Wasfy MO, Abdul-Rahman B et al. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1072	of Caldas province, Colombia. Vector Borne Zoonotic Dis 2013;13:289-94.
 1074 leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J 1075 Trop Med Hyg 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute 1077 febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1079 1980-2006;2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. Clin Neurol Neurosurg 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. Am J Trop Med Hyg 2015;92:256-61. 	1073	111. Ismail TF, Wasfy MO, Abdul-Rahman B et al. Retrospective serosurvey of
 1075 <i>Trop Med Hyg</i> 2006;75:1085-9. 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1074	leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J
 1076 112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute 1077 febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1079 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical endemic area. <i>Am J Trop Med Hyg</i> 2015:92:256-61. 	1075	<i>Trop Med Hyg</i> 2006; 75 :1085-9.
 1077 febrile illness in Egypt. <i>Trans R Soc Trop Med Hyg</i> 2007;101:707-13. 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1079 1980-2006. 2006;38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical 1085 endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1076	112. Jennings GJ, Hajjeh RA, Girgis FY et al. Brucellosis as a cause of acute
 1078 113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during 1079 1980-2006. 2006; 38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival 1081 in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 1082 2013; 115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute 1084 undifferentiated fever and clinical prediction of scrub typhus in a non-tropical 1085 endemic area. <i>Am J Trop Med Hyg</i> 2015: 92:256-61. 	1077	febrile illness in Egypt. Trans R Soc Trop Med Hyg 2007;101:707-13.
 1079 1980-2006. 2006; 38:139-48. 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013; 115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non tropical 1085 endemic area. <i>Am J Trop Med Hyg</i> 2015: 92:256-61. 	1078	113. Joshi DD, Sharma M, Bhandari S. Visceral leishmaniasis in Nepal during
 1080 114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. <i>Am J Trop Med Hyg</i> 2015:92:256-61. 	1079	1980-2006. 2006;38:139-48.
 1081 in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i> 1082 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute 1084 undifferentiated fever and clinical prediction of scrub typhus in a non-tropical 1085 endemic area. <i>Am J Trop Med Hyg</i> 2015;92:256-61. 	1080	114. Joshi R, Mishra PK, Joshi D et al. Clinical presentation, etiology, and survival
 1082 2013;115:1753-61. 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. <i>Am J Trop Med Hyg</i> 2015:92:256-61. 	1081	in adult acute encephalitis syndrome in rural Central India. <i>Clin Neurol Neurosurg</i>
 1083 115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. <i>Am J Trop Med Hyg</i> 2015:92:256-61. 	1082	2013;115:1753-61.
1084 undifferentiated fever and clinical prediction of scrub typhus in a non-tropical 1085 endemic area. <i>Am J Trop Med Hyg</i> 2015: 92 :256-61.	1083	115. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute
1085 endemic area. Am J Trop Med Hyg 2015: 92 :256-61.	1084	undifferentiated fever and clinical prediction of scrub typhus in a non-tropical
	1085	endemic area. Am J Trop Med Hyg 2015;92:256-61.

1086	116. Kakoti G, Dutta P, Ram Das B, Borah J, Mahanta J. Clinical profile and
1087	outcome of Japanese encephalitis in children admitted with acute encephalitis
1088	syndrome. Biomed Res Int 2013;2013:152656.
1089	117. Kamal IH, Al Gashgari B, Moselhy SS, Kumosani TA, Abulnaja KO. Two-
1090	stage PCR assay for detection of human brucellosis in endemic areas. BMC Infect Dis
1091	2013;13:145.
1092	118. Kendall EA. LaRocque RC. Bui DM et al. Short Report: Leptospirosis as a
1093	Cause of Fever in Urban Bangladesh. Am J Trop Med Hyg 2010:82:1127-30.
1094	<u>119. Kibuuka A. Bvakika Kibwika P. Achan J et al. Bacteremia Among Febrile</u>
1095	Ugandan Children Treated with Antimalarials Despite a Negative Malaria Test. Am J
1096	Tron Med Hyp 2015: 93 :276-80
1097	<u>120 Klempa B Kojvoguj L Svlla O et al Serological Evidence of Human</u>
1098	Hantavirus Infections in Guinea West Africa - Unfect Dis 2010-201-1031-4
1099	<u>121 Kocher C. Morrison AC. Leguia M et al. Rickettsial Disease in the Peruvian</u>
1100	Amazon Basin PLoS Neal Trop Dis 2016:10
1101	172 Kojzumi N. Gamage CD. Muto M et al. Serological and genetic analysis of
1102	leptospirosis in patients with acute febrile illness in Kandy Sri Lanka Inn I Infect
1102	Dis 2000-62:474-5
1104	<u>173 Kosov M Bai V Sheff K et al Identification of Bartonella infections in</u>
1105	febrile human patients from Thailand and their potential animal reservoirs Am I Tron
1106	Med Hvg 2010-82-1140-5
1107	174 Kuchuloria T. Imnadze P. Chokheli M et al. Short Report: Viral Hemorrhagic
1108	Fever Cases in the Country of Georgia: Acute Febrile Illness Surveillance Study
1109	Results Am LTrop Med Hyp 2014.91.246-8
1110	<u>125 Kuchuloria T. Impadze P. Mamuchishvili N et al. Hospital-Based Surveillance</u>
1111	for Infectious Etiologies Among Patients with Acute Febrile Illness in Georgia. 2008-
1112	2011 Am J Trop Med Hyg 2016:94:236-42
1113	<u>126 Kuloglu F Rolain IM Akata F Froglu C. Celik AD Parola P. Mediterranean</u>
1114	spotted fever in the Trakva region of Turkey Ticks Tick Borne Dis 2012:3:298-304
1115	127. Kumar V. Kumar V. Yaday AK et al. Scrub Typhus Is an Under-recognized
1116	Cause of Acute Febrile Illness with Acute Kidney Injury in India. PLoS Negl Trop
1117	Dis 2014:8.
1118	128 Kumar IS Saxena D Parida M Development and comparative evaluation of
1119	SYBR Green I-based one-step real-time RT-PCR assay for detection and
1120	quantification of West Nile virus in human patients Mol Cell Probes 2014:28:221-7
1121	129. Kumar S. Pandev AK. Gutch M et al. Acute viral encephalitis clinical features
1122	and outcome: Experience from a tertiary center of North India. Ann Trop Med Public
1123	2015: 8 :262-6.
1124	130. LaRocque RC. Breiman RF. Ari MD et al. Leptospirosis during dengue
1125	outbreak. Bangladesh. Emerg Infect Dis 2005:11:766-9.
1126	131. Lev B. Mtove G. Thriemer K et al. Evaluation of the Widal tube agglutination
1127	test for the diagnosis of typhoid fever among children admitted to a rural hospital in
1128	Tanzania and a comparison with previous studies. <i>BMC Infect Dis</i> 2010: 10 :180.
1129	132. Libraty DH. Mvint KS. Murray CK et al. A comparative study of leptospirosis
1130	and dengue in Thai children. <i>PLoS Negl Tron Dis</i> 2007:1:e111.
1131	133. Liu YX. Feng D. Zhang O et al. Key differentiating features between scrub
1132	typhus and hemorrhagic fever with renal syndrome in northern China. Am J Tron Med
1133	Hvg 2007; 76 :801-5.
1134	134. Liu W, Li H, Lu QB et al. Candidatus <i>Rickettsia tarasevichiae</i> Infection in
1135	Eastern Central China: A Case Series. Ann Intern Med 2016;164:641-8.
Į.	

1136	135. Mahende C, Ngasala B, Lusingu J et al. Aetiology of Acute Febrile Episodes
1137	in Children Attending Korogwe District Hospital in North-Eastern Tanzania. Plos
1138	One 2014;9.
1139	136. Maina AN, Knobel DL, Jiang J et al. Rickettsia felis infection in febrile
1140	patients, western Kenya, 2007-2010. 2012;18:328-31.
1141	137. Manock SR, Jacobsen KH, de Bravo NB et al. Etiology of acute
1142	undifferentiated febrile illness in the Amazon basin of Ecuador. Am J Trop Med Hyg
1143	2009;81:146-51.
1144	138. Matthias MA, Ricaldi JN, Cespedes M et al. Human leptospirosis caused by a
1145	new, antigenically unique Leptospira associated with a Rattus species reservoir in the
1146	Peruvian Amazon. PLoS Negl Trop Dis 2008;2:e213.
1147	139. Maude RR, de Jong HK, Wijedoru L et al. The diagnostic accuracy of three
1148	rapid diagnostic tests for typhoid fever at Chittagong Medical College Hospital,
1149	Chittagong, Bangladesh. Trop Med Int Health 2015;20:1376-84.
1150	140. Mayxay M, Castonguay Vanier J, Chansamouth V et al. Causes of non-
1151	malarial fever in Laos: a prospective study. Lancet Glob Health 2013;1:e46-54.
1152	141. Mazyad SA, Hafez AO. Q fever (Coxiella burnetii) among man and farm
1153	animals in North Sinai, Egypt. J Egypt Soc Parasitol 2007; 37 :135-42.
1154	142. McGready R, Ashley EA, Wuthiekanun V et al. Arthropod borne disease: the
1155	leading cause of fever in pregnancy on the Thai Burmese border. PLoS Negl Trop Dis
1156	2010;4:e888.
1157	143. Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D. Tick-
1158	borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis
1159	2010;4.
1160	144. Mediannikov O, Socolovschi C, Edouard S et al. Common epidemiology of
1161	<i>Rickettsia felis</i> infection and malaria, Africa. <i>Emerg Infect Dis</i> 2013;19:1775-83.
1162	145. Mediannikov O, Socolovschi C, Bassene H et al. Borrelia crocidurae
1163	infection in acutely febrile patients, Senegal. <i>Emerg Infect Dis</i> 2014;20:1335-8.
1164	146. Meremo A, Mshana SE, Kidenya BR, Kabangila R, Peck R, Kataraihya JB.
1165	High prevalence of Non-typhoid salmonella bacteraemia among febrile HIV adult
1166	patients admitted at a tertiary Hospital, North Western Tanzania. Int Arch Med
1167	2012;5:28.
1168	147. Metanat M, Sepehri Rad N, Alavi-Naini R et al. Acute Q fever among febrile
1169	patients in Zahedan, southeastern Iran. <i>Turk J Med Sci</i> 2014; 44 :99-103.
1170	148. Moon TD, Silva WP, Buene M et al. Bacteremia as a cause of fever in
1171	ambulatory, HIV infected Mozambican adults: results and policy implications from a
1172	prospective observational study. <i>PLoS One</i> 2013;8:e83591.
11/3	149. Morrison AC, Forshey BM, Notyce D et al. Venezuelan equine encephalitis
11/4	virus in Iquitos, Peru: urban transmission of a sylvatic strain. PLoS Negl Irop Dis
11/5	$\frac{2008;2:e349}{200}$
11/6	150. Mourembou G, Fenoliar F, Socolovschi C et al. Molecular Detection of
11//	Fasticious and Common Bacteria as well as <i>Plasmodium</i> spp. in Febrile and Alebrile
11/8	Children in Franceville, Gabon. Am J Trop Med Hyg 2015;92:926-32.
11/9	151. Mourembou G, Lekana-Douki JB, Mediannikov O et al. Possible Role of
1180	KICKETISIA JEUS IN ACUTE FEDITIE IIINESS AMONG Children in Gabon. Emerg Infect Dis
1101	2015;21:1808-15.
1182	152. Mourembou G, Nzondo SM, Ndjoyi Mbiguino A et al. Co-circulation of
1183	Plasmodium and Bacterial DNAs in Blood of Febrile and Atebrile Children from
1184	Urban and Kural Areas in Gabon. Am J Trop Med Hyg 2016;95:123-32.

1185	153. Mtove G, Amos B, von Seidlein L et al. Invasive salmonellosis among
1186	children admitted to a ruraloutpatient Tanzanian hospital and a comparison with
1187	previous studies. PLoS One 2010;5:e9244children. N Engl J Med 2014; 370: 809-17.
1188	<u>39.</u> Wang TH, Wei KC, Jiang DD, Chiu CH, Chang SC, Wang JD. Unexplained
1189	deaths and critical illnesses of suspected infectious cause, Taiwan, 2000-2005. Emerg
1190	Infect Dis 2008; 14: 1653-5.
1191	40. Higgins JPT, Altman DG, JAC S (editors). Chapter 8: Assessing risk of bias in
1192	included studies. In: Higgins JPT, S G (editors), Cochrane Handbook for Systematic
1193	Reviews of Interventions, Version 5.2.0 (updated June 2017), Cochrane, 2017.
1194	http://handbook-5-1.cochrane.org (Accessed 1 October 2019).
1195	41. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for
1196	the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155:
1197	529-36.
1198	42. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS)
1199	for assessing the quality of nonrandomised studies in meta-analyses. 2019.
1200	http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (Accessed 01 October
1201	<u>2019).</u>
1202	43. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016.
1203	https://ggplot2.tidyverse.org (Accessed 01 October 2019).
1204	44. Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their
1205	domestic mammals: pathogen characteristics, host range and the risk of emergence.
1206	<u>Philos Trans R Soc Lond B Biol Sci 2001; 356: 991-9.</u>
1207	45. Rubach MP, Maro VP, Bartlett JA, Crump JA. Etiologies of illness among
1208	patients meeting integrated management of adolescent and adult illness district
1209	clinician manual criteria for severe infections in northern Tanzania: implications for
1210	empiric antimicrobial therapy. Am J Trop Med Hyg 2015; 92: 454-62.
1211	46. Keusch GT, Pappaioanou M, Gonzalez MC, Scott KA, Tsai P, editors.
1212	Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases.
1213	Washington (DC); 2009.
1214	<u>47.</u> <u>154.</u> <u>Mtove G, Amos B, Nadjm B et al. Decreasing incidence of severe</u>
1215	malaria and community acquired bacteraemia among hospitalized children in
1216	Muheza, north eastern Tanzania, 2006–2010. <i>Malaria J</i> 2011; 10 .
1217	155. Mtove G, Hendriksen IC, Amos B et al. Treatment guided by rapid diagnostic
1218	tests for malaria in Tanzanian children: safety and alternative bacterial diagnoses.
1219	<i>Malar J</i> 2011; 10 :290.
1220	156. Mueller TC, Siv S, Khim N et al. Acute undifferentiated febrile illness in rural
1221	Cambodia: a 3 year prospective observational study. <i>PLoS One</i> 2014; 9 :e95868.
1222	157. Mukhtar M, Abdoun A, Ahmed AE et al. Diagnostic accuracy of rK28-based
1223	immunochromatographic rapid diagnostic tests for visceral leishmaniasis: a
1224	prospective clinical cohort study in Sudan. <i>Trans R Soc Trop Med Hyg</i> 2015; 109 :594-
1225	000. 159 Murdach DD Woods CW Zimmerman MD et al. The sticlass of febrile
1220	158. Murdoch DK, woods UW, Zimmerman MD et al. The ethology of februe
1227	The second secon
1220	Hyg 2004; 70:070-5.
1229	157. WHITHAY CK, Gray WK, WICHAE K et al. Use of patient-specific Leptospira
1230	(MAT) Trans P See Trep Med Hug 2011, 105, 200, 12
1221	(WHAT), Halls R Soc Hop Wee Hyg 2011;103:209-13.
1222	treatment in children admitted to bosnital in an area of intense Diasmodium
1227	falcinarum transmission: prospective study <i>Pini</i> 2010; 240 :e1250
1234	raterparum transmission. prospective study. <i>Drnj</i> 2010; 340 :01330.

1235 161. Nadjm B, Mtove G, Amos B et al. Severe febrile illness in adult hospital 1236 admissions in Tanzania: a prospective study in an area of high malaria transmission. 1237 Trans R Soc Trop Med Hyg 2012;106:688-95. 162. Naheed A, Ram PK, Brooks WA et al. Clinical value of Tubex and Typhidot 1238 1239 rapid diagnostic tests for typhoid fever in an urban community clinic in Bangladesh. Diagn Microbiol Infect Dis 2008;61:381-6. 1240 1241 163. Nandagopal B, Sankar S, Lingesan K, Appu K, Sridharan G, Gopinathan A. 1242 Application of polymerase chain reaction to detect Burkholderia pseudomallei and 1243 Brucella species in buffy coat from patients with febrile illness among rural and peri-1244 urban population. J Glob Infect Dis 2012;4:31-7. 1245 164. Natarajaseenivasan K, Prabhu N, Selvanayaki K, Raja SS, Ratnam S. Human 1246 leptospirosis in Erode, South India: serology, isolation, and characterization of the 1247 isolates by randomly amplified polymorphic DNA (RAPD) fingerprinting. Jpn J Infect Dis 2004;57:193-7. 1248 165. Natarajaseenivasan K, Raja V, Narayanan R. Rapid diagnosis of leptospirosis 1249 1250 in patients with different clinical manifestations by 16S rRNA gene based nested 1251 PCR. Saudi J Biol Sci 2012;19:151-5. 1252 166. Ndip LM, Fokam EB, Bouver DH et al. Detection of *Rickettsia africae* in patients and ticks along the coastal region of Cameroon. Am J Trop Med Hyg 1253 1254 2004;71:363-6. 1255 167. Ndip LM, Labruna M, Ndip RN, Walker DH, McBride JW. Molecular and 1256 elinical evidence of Ehrlichia chaffeensis infection in Cameroonian patients with 1257 undifferentiated febrile illness. Ann Trop Med Parasitol 2009;103:719-25. 168. Njeru J, Henning K, Pletz MW et al. Febrile patients admitted to remote 1258 hospitals in Northeastern Kenya: seroprevalence, risk factors and a clinical prediction 1259 1260 tool for Q-Fever. BMC Infect Dis 2016;16:244. 169. Nordstrand A, Bunikis I, Larsson C et al. Tickborne relapsing fever diagnosis 1261 obscured by malaria, Togo. Emerg Infect Dis 2007;13:117-23. 1262 170. Onyango D, Machioni F, Kakai R, Waindi EN. Multidrug resistance of 1263 Salmonella enterica serovars Typhi and Typhimurium isolated from clinical samples 1264 1265 at two rural hospitals in Western Kenya. J Infect Dev Ctries 2008;2:106-11. 171. Onyango MD, Ghebremedhin B, Waindi EN et al. Phenotypic and genotypic 1266 analysis of clinical isolates Salmonella serovar Typhimurium in western Kenya. J 1267 Infect Dev Ctries 2009;3:685-94. 1268 1269 172. Paris DH, Blacksell SD, Nawtaisong P et al. Diagnostic Accuracy of a Loop-1270 Mediated Isothermal PCR Assay for Detection of Orientia tsutsugamushi during Acute Scrub Typhus Infection. PLoS Negl Trop Dis 2011;5. 1271 173. Park SE, Pak GD, Aaby P, et al. The Relationship Between Invasive 1272 1273 Nontyphoidal Salmonella Disease, Other Bacterial Bloodstream Infections, and 1274 Malaria in Sub-Saharan Africa. Clin Infect Dis 2016; 62 Suppl 1: S23-31. 174. Parola P, Diatta G, Socolovschi C et al. Tick borne relapsing fever borreliosis, 1275 1276 rural senegal. Emerg Infect Dis 2011;17:883-5. 175. Peters RPH, Zijlstra EE, Schijffelen MJ et al. A prospective study of 1277 1278 bloodstream infections as cause of fever in Malawi: clinical predictors and 1279 implications for management. Trop Med Int Health 2004;9:928-34. 176. Phimda K, Hoontrakul S, Suttinont C et al. Doxveyeline versus azithromycin 1280 for treatment of leptospirosis and scrub typhus. Antimicrob Agents Chemother 1281 1282 2007;51:3259-63.

1283 177. Pradhan R, Shrestha U, Gautam SC et al. Bloodstream infection among 1284 children presenting to a general hospital outpatient clinic in urban Nepal. PLoS One 1285 2012:7:e47531. 1286 178. Prakash JA, Sohan Lal T, Rosemol V et al. Molecular detection and analysis of spotted fever group Rickettsia in patients with fever and rash at a tertiary care 1287 centre in Tamil Nadu, India. Pathogens and global health 2012;106:40-5. 1288 179. Preziosi M, Zimba TF, Lee K et al. A prospective observational study of 1289 1290 bacteraemia in adults admitted to an urban Mozambican hospital. S Afr Med J 2015:105:370-4. 1291 180. Rafizah AA, Aziah BD, Azwany YN et al. A hospital based study on 1292 seroprevalence of leptospirosis among febrile cases in northeastern Malaysia. Int J 1293 1294 Infect Dis 2013;17:e394-7. 181. Rao P, Sethi S, Sud A, Banga SS, Sharma M. Screening of patients with acute 1295 1296 febrile illness for leptospirosis using clinical criteria and serology. Natl Med J India 2005:18:244-6. 1297 1298 182. Rasul CH, Muhammad F, Hossain MJ, Ahmed KU, Rahman M. Acute 1299 meningoencephalitis in hospitalised children in southern Bangladesh. Malays J Med 1300 Sci 2012:19:67-73. 183. Ratmanov P, Bassene H, Fenollar F et al. The correlation of Q fever and 1301 1302 Coxiella burnetii DNA in household environments in rural Senegal. Vector Borne 1303 Zoonotic Dis 2013;13:70-2. 1304 184. Rayamajhi A, Singh R, Prasad R, Khanal B, Singhi S. Clinico-laboratory 1305 profile and outcome of Japanese encephalitis in Nepali children. Ann Trop Paediatr 1306 2006:**26**:293-301. 185. Rayamajhi A, Singh R, Prasad R, Khanal B, Singhi S. Study of Japanese 1307 encephalitis and other viral encephalitis in Nepali children. Pediatr Int 2007;49:978-1308 1309 84. 186. Rayamajhi A, Ansari I, Ledger E et al. Clinical and prognostic features among 1310 1311 children with acute encephalitis syndrome in Nepal; a retrospective study. BMC Infect Dis 2011:11. 1312 1313 187. Reller ME, Clemens EG, Schachterle SE, Mtove GA, Sullivan DJ, Dumler JS. 1314 Multiplex 5' nuclease quantitative PCR for diagnosis of relapsing fever in a large Tanzanian cohort. J Clin Microbiol 2011;49:3245-9. 1315 188. Reller ME, Bodinavake C, Nagahawatte A et al. Unsuspected rickettsioses 1316 1317 among patients with acute febrile illness, Sri Lanka, 2007. Emerg Infect Dis 1318 2012;**18**:825-9. 189. Reller ME, Wunder EA, Jr., Miles JJ et al. Unsuspected leptospirosis is a 1319 cause of acute febrile illness in Nicaragua. PLoS Negl Trop Dis 2014;8:e2941. 1320 1321 190. Richards AL, Jiang J, Omulo S et al. Human Infection with Rickettsia felis, 1322 Kenya. Emerg Infect Dis 2010;16:1081-6. 191. Rijal S, Boelaert M, Regmi S et al. Evaluation of a urinary antigen based latex 1323 1324 agglutination test in the diagnosis of kala azar in eastern Nepal. Trop Med Int Health 2004:9:724-9. 1325 1326 192. Rutvisuttinunt W, Chinnawirotpisan P, Klungthong C et al. Evidence of West 1327 Nile virus infection in Nepal. BMC Infect Dis 2014;14:606. 193. Saisongkorh W, Chenchittikul M, Silpapojakul K. Evaluation of nested PCR 1328 1329 for the diagnosis of scrub typhus among patients with acute pyrexia of unknown origin. Trans R Soc Trop Med Hyg 2004;98:360-6. 1330 1331 194. Sarih M, Garnier M, Boudebouch N et al. Borrelia hispanica relapsing fever, Morocco. Emerg Infect Dis 2009;15:1626-9. 1332

1333	195. Sarkar A, Taraphdar D, Mukhopadhyay SK, Chakrabarti S, Chatterjee S.
1334	Molecular evidence for the occurrence of Japanese encephalitis virus genotype I and
1335	III infection associated with acute Encephalitis in Patients of West Bengal, India,
1336	2010. <i>Virol J</i> 2012;9.
1337	196. Schoepp RJ, Rossi CA, Khan SH, Goba A, Fair JN. Undiagnosed acute viral
1338	febrile illnesses, Sierra Leone. Emerg Infect Dis 2014;20:1176-82.
1339	197. Shukla J, Saxena D, Rathinam S et al. Molecular detection and
1340	characterization of West Nile virus associated with multifocal retinitis in patients
1341	from southern India. Int J Infect Dis 2012;16:e53-9.
1342	198. Singh RR, Chaudhary SK, Bhatta NK, Khanal B, Shah D. Clinical and
1343	etiological profile of acute febrile encephalopathy in Eastern Nepal. Indian J Pediatr
1344	2009;76:1109-11.
1345	199. Singh KP, Mishra G, Jain P et al. Co-positivity of anti-dengue virus and anti-
1346	Japanese encephalitis virus IgM in endemic area: co infection or cross reactivity?
1347	Asian Pac J Trop Med 2014;7:124-9.
1348	200. Sinvange N, Kumar R, Inambao A et al. Outbreak of Plague in a High Malaria
1349	Endemic Region - Nyimba District, Zambia, March-May 2015. Mmwr-Morbid Mortal
1350	W 2016;65:807-11.
1351	201. Socolovschi C, Mediannikov O, Sokhna C et al. Rickettsia felis-associated
1352	Uneruptive Fever, Senegal. Emerg Infect Dis 2010;16:1140-2.
1353	202. Sokhna C, Mediannikov O, Fenollar F et al. Point of care laboratory of
1354	pathogen diagnosis in rural Senegal. PLoS Negl Trop Dis 2013;7:e1999.
1355	203. Sonthayanon P, Chierakul W, Wuthiekanun V et al. Rapid diagnosis of scrub
1356	typhus in rural Thailand using polymerase chain reaction. Am J Trop Med Hyg
1357	2006;75:1099-102.
1358	204. Sothmann P, Krumkamp R, Kreuels B et al. Urbanicity and Paediatric
1359	Bacteraemia in Ghana-A Case Control Study within a Rural-Urban Transition Zone.
1360	<i>PLoS One</i> 2015; 10 :e0139433.
1361	205. Sow A, Loucoubar C, Diallo D et al. Concurrent malaria and arbovirus
1362	infections in Kedougou, southeastern Senegal. Malar J 2016;15:47.
1363	206. Stremlau MH, Andersen KG, Folarin OA et al. Discovery of novel
1364	rhabdoviruses in the blood of healthy individuals from West Africa. PLoS Negl Trop
1365	<i>Dis</i> 2015; 9 :e0003631.
1366	207. Suharti C, van Gorp EC, Dolmans WM et al. Hanta virus infection during
1367	dengue virus infection outbreak in Indonesia. Acta Med Indones 2009;41:75-80.
1368	208. Suputtamongkol Y, Suttinont C, Niwatayakul K et al. Epidemiology and
1369	clinical aspects of rickettsioses in Thailand. Ann NY Acad Sci 2009;1166:172-9.
1370	209. Suputthamongkol Y, Nitatpattana N, Chayakulkeeree M, Palabodeewat S,
1371	Yoksan S, Gonzalez JP. Hantavirus infection in Thailand: first clinical case report.
1372	Southeast Asian J Trop Med Public Health 2005;36:700-3.
1373	210. Suttinont C, Losuwanaluk K, Niwatayakul K et al. Causes of acute,
1374	undifferentiated, febrile illness in rural Thailand: results of a prospective
1375	observational study. Ann Trop Med Parasit 2006;100:363-70.
1376	211. Swami R, Ratho RK, Mishra B, Singh MP. Usefulness of RT-PCR for the
1377	diagnosis of Japanese encephalitis in clinical samples. Scand J Infect Dis
1378	2008;40:815-20.
1379	212. Taraphdar D, Sarkar A, Chatterjee S. Mass scale screening of common
1380	arboviral infections by an affordable, cost effective RT PCR method. Asian Pac J
1381	<i>Trop Biomed</i> 2012; 2 :97-101.

1382	213. Tezcan G, Kupesiz A, Ozturk F et al. Episodes of fever and neutropenia in
1383	children with cancer in a tertiary care medical center in Turkey. Pediatr Hematol
1384	Oncol 2006;23:217-29.
1385	214. Thipmontree W, Suputtamongkol Y, Tantibhedhyangkul W, Suttinont C,
1386	Wongswat E, Silpasakorn S. Human leptospirosis trends: northeast Thailand, 2001-
1387	2012. Int J Environ Res Public Health 2014;11:8542-51.
1388	215. Thompson CN, Blacksell SD, Paris DH et al. Undifferentiated febrile illness
1389	in Kathmandu, Nepal. Am J Trop Med Hyg 2015; 92 :875-8.
1390	216. Tigoi C, Lwande O, Orindi B, Irura Z, Ongus J, Sang R. Seroepidemiology of
1391	Selected Arboviruses in Febrile Patients Visiting Selected Health Facilities in the
1392	Lake/River Basin Areas of Lake Baringo, Lake Naivasha, and Tana River, Kenya.
1393	Vector Borne Zoonotic Dis 2015;15:124-32.
1394	217. Wiersinga WJ, Birnie E, Weehuizen TA et al. Clinical, environmental, and
1395	serologic surveillance studies of melioidosis in Gabon, 2012-2013. Emerg Infect Dis
1396	2015;21:40-7.
1397	218. Wuthiekanun V, Chierakul W, Limmathurotsakul D et al. Optimization of
1398	culture of Leptospira from humans with leptospirosis. J Clin Microbiol
1399	2007;45:1363-5.
1400	219. Zhang L, Cui F, Wang L et al. Investigation of anaplasmosis in Yiyuan
1401	County, Shandong Province, China. Asian Pac J Trop Med 2011;4:568-72.
1402	220. Zhang L, Wang G, Liu Q et al. Molecular analysis of Anaplasma
1403	phagocytophilum isolated from patients with febrile diseases of unknown etiology in
1404	China. PLoS One 2013;8:e57155.
1405	221. Zhou X, Li SG, Chen SB et al. Co-infections with Babesia microti and
1406	Plasmodium parasites along the China Myanmar border. Infect Dis Poverty
1407	2013;2:24.
1408	222. Zimmerman MD, Murdoch DR, Rozmajzl PJ et al. Murine typhus and febrile
1409	illness, Nepal. Emerg Infect Dis 2008;14:1656-9.
1410	

1411 **Tables**

1412

1413Table 1. Zoonoses included in the review, with details of species and serovars where

1414 appropriate.

Dethogen	Species subspecies and sevenars evaluated	Dethegen
Pathogen	species, subspecies, and serovars excluded	Pathogen
		type (13)
Alphaviruses	All species excluded with the exception of	Virus
	Eastern equine encephalitis virus (EEEV)	
	complex, Venezuelan equine encephalitis (VEEV)	
	complex, and Western equine encephalitis virus	
	(WFFV) complex	
Angelaguagen	(WEEV) complex	Destario
Anapiasma spp.		Dacteria
Aphthoviruses	All species excluded with the exception of Foot	V Irus
	and-mouth disease virus	
Avulaviruses	All species excluded with the exception of	Virus
	Newcastle disease virus	
Babesia spp.	-	Protozoa
Bacillus	_	Bacteria
antrhracis		Buetena
Rartonella spp	R hacilliformis and R quintana	Rectoria
Borralia app.	D. bacurgorinis and D. quintand	Bactoria
borrena spp.	D. ICCUITCINIS	Diciella
Bovine	-	Prion
spongiform		
encephalopathy		
Brucella spp.	-	Bacteria
Burkholderia	B. cepacia complex and B. psuedomallei	Bacteria
SDD.		
<i>Campylohaeter</i>	-	Bacteria
ennpytooueter		Ductoriu
Chlamudia opp	All spacing avaluded with the exception of C	Pactoria
Cnumyuu spp.	rait species excluded with the exception of e.	Dacteria
	psinaci	D
Coxiella burnetu		Bacteria
<i>Cryptosporidium</i>	C. hominis	Protozoa
spp.		
<i>Ebolavirus</i>	-	Virus
<i>Echinococcus</i>	-	Helminth
snn-		
Ehrlichia spp.	_	Bacteria
Enterovirusos	All species excluded with the exception of Swine	Virus
Enteroviruses	rin species exeruded with the exception of Swille	-v 11 uS
	Vesicular alsease virus	D
Escherichia spp.	All species excluded with the exception of Shiga-	Bacteria
	toxin producing <i>E. coli</i>	
Flaviviruses	All species excluded with the exception of	Virus
	Japanese encephalitis virus (JEV), West Nile	
	virus (WNV), and Tick-borne encephalitis	
	viruses	
Francisalla	$\begin{array}{c} \text{All spacing evaluated with the evacation of } E \end{array}$	Bactoria
- ranciseita spp.	tularania	Dacteria
TT	tuarensis	* 7*
Hantavirus	-	Virus

Henipaviruses	-	Virus
Lassa virus	-	Virus
<i>Leishmania</i> spp.	L. donovani if detected in India	Protozoa
Leptospira spp.	-	Bacteria
Listeria spp.	-	Bacteria
Lyssavirus	All species excluded with the exception of rabies	Virus
Marburg virus	-	Virus
<i>Mycobacterium</i>	All species excluded with the exception of <i>M</i> .	Bacteria
Noinessimo	<i>Dovis</i> and <i>M. avis</i>	Vima
INAIFOVIFUS	An species excluded with the exception of	- v irus
Orthonormi	Crimean-Congo nemorrhagic jever virus	X7:
Orthopox viruses	All species excluded with the exception of	V Irus
	Cowpox virus, Monkeypox virus, and Vaccinia	
<i>Pasteurella</i> spp.	-	Bacteria
Phleboviruses	All species excluded with the exception of <i>Rift</i> Valley Fever virus	Virus
Rickettsia spp.	All species excluded with the exception of <i>R</i> .	Bacteria
Salmonella spp.	All species, subspecies, and serovars excluded with the exception of nontyphoidal Salmonella serovars	Bacteria
Schistosoma spp.	S. haematobium, S. intercalatum, and S. mekongi.	Helminth
Streptobacillus	-	Bacteria
spp.		D (
Streptococcus SDD:	All species excluded with the exception of 5. canis, S. suis, S. caui, and S. iniae	Bacteria
Taenia spp.	-	Helminth
Toxocara	-	Helminth
Toxoplasma sondii	-	Protozoa
Trichinella spp	-	Helminth
Trypanosoma	All species excluded with the exception of T	Protozoa
Spp.	brucei rhodesiense and T. cruzi	11000200
Varicelloviruses	All species excluded with the exception of	Virus
	Pseudorabies virus	
Vesiculoviruses	All species excluded with the exception of	Virus
	Vesicular stomatitis virus	
Yersinia spp.	All species excluded with the exception of <i>Y</i> .	Bacteria
	pesns, 1. enteroconnica and 1. pseudonaberculosis	

1417 | Table 2: Inclusion and exclusion criteria for full text review

<u>Outcome</u> <u>Criterion</u>						
	Inclusion	Enterior				
	menusion.	• Februe population (≥ 2 people with a lever, defined as body				
		$\frac{\text{temperature} \geq 38.0^{\circ}\text{C}}{2}$				
		Diagnosis of one or more zoonotic pathogens from pre-				
		defined reference list of eligible aetiological agents (Table 1)				
		Diagnostic test criteria:				
		i) Culture of the pathogen from sample(s) collected from an				
		febrile person				
		ii) Direct detection of the pathogen (e.g. by PCR based				
		techniques) from sample(s) collected from a febrile person				
		iii) Secological diagnosis of acute infection based on testing of				
		hoth soute and convalescent phase serum samples and				
		demonstration of sereconversion				
		iv) Diagnosis of south infection based on detection of nother				
		iv) Diagnosis of acute infection based on detection of pathogen-				
		specific lgM or antigens in a single serum sample only for				
		selected pathogens, for which widely accepted case				
		definitions deemed pathogen specific IgM or antigens				
		detection sufficiently accurate (see footnote ⁺)				
		v) IgM detection in CSF (e.g. for JEV and WNV)				
	Exclusion	Eailure to meet inclusion criteria described above				
	Exclusion.	 Lack of study detail a g, number of people tested for each 				
		• Lack of study detail e.g. number of people tested for each				
		patnogen				
		Negative diagnostic test results in all patients				
		 Study designed to evaluate diagnostic test and/or vaccine 				
		performance without presenting novel data on number or				
		proportion of patients diagnosed with a study pathogen from				
		a previously described population of febrile people.				
		• Study described as a group of > 2 people principally				
		classified based on a shared (100% frequency) actiological				
		diagnosis				
		Deview				
1/10	¹ The fellowin	- Review				
1410	200 hy miana	is were considered valid tests: <i>Leptospira</i> spp. aggridination ther of \leq				
1419	800 by micro	scopic aggrutination test in one serum specimen (55); detection of				
1420	Hantavirus sj	pecific IgM in a serum sample (36); detection of virus specific IgM				
1421	antibodies in	serum with confirmatory virus specific neutralizing antibodies for				
1422	Eastern equit	ie encephalitis virus (EEEV), West Nile virus (WNV), Western equine				
1423	encephalitis v	virus (WEEV), and Venezuelan equine encephalitis virus (VEEV) (37);				
1424	identification	of lyssavirus specific antibody by indirect fluorescent antibody test or				
1425	complete rab	ies virus neutralization at 1:5 dilution in the serum of an unvaccinated				
1426	person (38); (detection of viral antigens in blood by enzyme-linked immunosorbent				
1427	assay for Ebc	ala (39,40), Marburg (40,41), Lassa (40,42), and Crimean-Congo				
1428	hemorrhagic-	fever viruses (40); detection of Rift Valley fever antigens or IgM in				
1429	blood by enzy	yme-linked Immunosorbent assay (43); and IgM detection in CSF for				
1430	EEEV, Japar	uese encephalitis virus (JEV), rabies virus, WEEV, WNV and VEEV				
1431	(37,38.44).					
1432	<u></u>					
1433						
1.00						

Table 3: Characteristics and summary of extracted data for the 181 articles included in the review.

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2009-			
Aarsland et al (2012)(45)	Ethiopia	2010	Borrelia spp.	102	2
		2009-			
Aarsland et al (2012)(45)	Ethiopia	2010	Rickettsia (SFGR)	102	4
Adurthi et al (2008)(46)	India	-	Toxoplasma gondii	162	21
		1999-			
Afifi et al (2005)(47)	Egypt	2003	<i>Brucella</i> spp.	9883	275
			Eastern equine		
Aguilar et al (2007)(48)	Peru	-	encephalitis virus	153	2
		2004-	<i>Salmonella</i> (non-Typhi)		
Akinyemi et al (2007)(49)	Nigeria	2005	serovars	235	16
		2010-	<i>Salmonella</i> (non-Typhi)		
Akinyemi et al (2015)(50)	Nigeria	2011	serovars	135	2
		2008-	Crimean-Congo		
Alam et al (2013)(51)	Pakistan	2008	haemorrhagic fever virus	44	16
Albuquerque Filho et al		2009 -			
(2011)(52)	Brazil	2009	<i>Leptospira</i> spp.	97	56
			Salmonella (non-Typhi)		
Al-Emran et al (2016)(53)	No Single Country	-	serovars	10636	77
		2011 -	<i>Salmonella</i> (non-Typhi)		
Al-Emran et al (2016)(54)	No Single Country	2013	serovars	8161	28
		2001-	Crimean-Congo		
Ali et al (2007)(55)	Pakistan	2001	haemorrhagic fever virus	10	3
Andualem et al (2014)(56)	Ethiopia	2010-	Salmonella (non-Typhi)	270	7

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2011	serovars		
		2007-	Japanese encephalitis		
Anga et al (2010)(57)	Papua New Guinea	2008	virus	129	2
		2008-			
Angelakis et al (2014)(58)	No Single Country	2012	Coxiella burnetii	1888	7
		2006 -			
Armien et al (2013)(59)	Panama	2010	Hantavirus	150	117
		2010-			
Barua et al (2016)(60)	India	2012	Brucella spp.	102	18
		2009-			
Bengre et al (2012)(61)	India	2011	Pasteurella spp.	50	1
	United Republic of	2007-			
Biggs et al (2011)(62)	Tanzania	2008	<i>Leptospira</i> spp.	831	70
	United Republic of	2006-	Salmonella (non-Typhi)		
Biggs et al (2014)(63)	Tanzania	2008	serovars	4106	163
	Lao People's	2001-			
Blacksell et al (2006)(64)	Democratic Republic	2003	<i>Leptospira</i> spp.	186	5
		2002-			
Blacksell et al (2007)(65)	Nepal	2004	Orientia tsutsugamushi	103	5
		2002-			
Blacksell et al (2007)(65)	Nepal	2004	Rickettsia (TGR)	103	9
	Lao People's	2003-			
Blacksell et al (2010)(66)	Democratic Republic	2007	Orientia tsutsugamushi	1030	101
	Lao People's	2003-			
Blacksell et al (2010)(66)	Democratic Republic	2007	Rickettsia (TGR)	1030	183
		2007-			
Blacksell et al (2016)(67)	Thailand	2008	Orientia tsutsugamushi	135	22

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2006-			
Blacksell et al (2016)(68)	Thailand	2007	Orientia tsutsugamushi	152	37
		2012-			
Boisen et al (2015)(69)	Sierra Leone	2012	Lassa virus	53	29
		2012 -			
Boisen et al (2015)(69)	Sierra Leone	2012	West Nile virus	23	4
		2001-			
Boonsilp et al (2011)(70)	Thailand	2002	<i>Leptospira</i> spp.	418	120
		2000-			
Bottieau et al (2011)(71)	No Single Country	2006	Campylobacter spp.	512	47
		2000-	Salmonella (non-Typhi)		
Brooks et al (2005)(72)	Bangladesh	2001	serovars	888	2
		2007-			
Castillo Ore et al (2012)(73)	Peru	2010	Hantavirus	5174	9
		2001-			
Chadha et al (2006)(74)	India	2001	Nipah virus	6	5
		2002-			
Chandy et al (2005)(75)	India	2003	Hantavirus	152	23
		2005-			
Chandy et al (2009)(76)	India	2007	Hantavirus	347	86
	Lao People's	2006-			
Chansamouth et al (2016)(77)	Democratic Republic	2010	<i>Leptospira</i> spp.	158	4
	Lao People's	2006-			
Chansamouth et al (2016)(77)	Democratic Republic	2010	Orientia tsutsugamushi	217	16
	Lao People's	2006-			
Chansamouth et al (2016)(77)	Democratic Republic	2010	Rickettsia (TGR)	217	15
Chatterjee et al (2004)(78)	India	1996-	Japanese encephalitis	72	24

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		1999	virus		
		2011-			
Chen et al (2014)(79)	China	2012	Hantavirus	85	33
		2011-			
Chen et al (2014)(79)	China	2012	Orientia tsutsugamushi	85	4
		2011-			
Chen et al (2014)(79)	China	2012	Rickettsia (TGR)	85	1
		2009-	Japanese encephalitis		
Chheng et al (2013)(80)	Cambodia	2010	virus	107	6
		2009-			
Chheng et al (2013)(80)	Cambodia	2010	<i>Leptospira</i> spp.	1179	17
		2009-			
Chheng et al (2013)(80)	Cambodia	2010	Orientia tsutsugamushi	1179	17
		2009-			
Chheng et al (2013)(80)	Cambodia	2010	Rickettsia (TGR)	1179	5
		2009 -	Salmonella (non-Typhi)		
Chheng et al (2013)(80)	Cambodia	2010	serovars	1180	1
Chikeka et al (2016)(81)	Nicaragua	-	Ehrlichia spp.	748	4
	Iran (Islamic Republic	2008-			
Chinikar et al (2012)(82)	of)	2009	West Nile virus	249	3
		2011-			
Chiriboga et al (2015)(83)	Ecuador	2012	<i>Leptospira</i> spp.	210	132
		2007-			
Chrispal et al (2010)(84)	India	2008	Hantavirus	398	1
		2003-			
Ciftdogan et al (2011)(85)	Turkey	2008	Brucella spp.	92	3

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2002-			
Cohen et al (2007)(86)	Thailand	2003	<i>Leptospira</i> spp.	704	67
	United Republic of	2007-	Salmonella (non-Typhi)		
Crump et al (2011)(5)	Tanzania	2008	serovars	224	2
	United Republic of	2007-	Salmonella (non-Typhi)		
Crump et al (2011)(87)	Tanzania	2008	serovars	139	1
	United Republic of	2007-			
Crump et al (2013)(12)	Tanzania	2008	<i>Brucella</i> spp.	453	16
	United Republic of	2007-			
Crump et al (2013)(12)	Tanzania	2008	Coxiella burnetii	482	24
	United Republic of	2007-			
Crump et al (2013)(12)	Tanzania	2008	<i>Leptospira</i> spp.	453	40
	United Republic of	2007-			
Crump et al (2013)(12)	Tanzania	2008	Rickettsia (SFGR)	450	36
	United Republic of	2007-			
Crump et al (2013)(12)	Tanzania	2008	Rickettsia (TGR)	450	2
	Bolivia (Plurinational	2008-			
Cruz et al (2012)(88)	State of)	2009	Hantavirus	372	9
	United Republic of	2008-	<i>Salmonella</i> (non-Typhi)		
D'Acremont et al (2014)(28)	Tanzania	2008	serovars	424	4
		2007-			
Dassanayake et al (2009)(89)	Sri Lanka	2008	<i>Leptospira</i> spp.	123	62
			Salmonella (non-Typhi)		
Davies et al (2016)(90)	Nigeria	-	serovars	129	15
		2010-			
Degarege et al (2012)(91)	Ethiopia	2011	Schistosoma mansoni	702	82
Dong et al (2014)(92)	China	2009-	Salmonella (non-Typhi)	2529	3

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2011	serovars		
		2009-			
dos Santos et al (2012)(93)	Brazil	2010	Rickettsia (SFGR)	110	36
		2005-			
Ehichioya et al (2012)(94)	Nigeria	2008	Lassa virus	4 51	2
		2007-	Salmonella (non-Typhi)		
Eibach et al (2016)(95)	Ghana	2012	serovars	7172	215
		1999 -			
El-Mahallawy et al (2005)(96)	Egypt	1999	<i>Listeria</i> spp.	1135	1
		1999-			
El-Mahallawy et al (2005)(96)	Egypt	1999	Pasteurella spp.	1135	6
		2008-			
Elhelw et al (2014)(97)	Egypt	2009	Borrelia spp.	15	4
		1999-	Japanese encephalitis		
Ellis et al (2006)(98)	Thailand	2002	virus	530	1
		1999 -			
Ellis et al (2006)(98)	Thailand	2002	<i>Leptospira</i> spp.	613	107
		2008-			
Elyan et al (2014)(99)	Afghanistan	2010	West Nile virus	277	24
		2007-			
Eremeeva et al (2013)(100)	Guatemala	2007	Rickettsia (SFGR)	17	4
		1999-			
Fadeel et al (2006)(101)	Egypt	2003	Brucella spp.	1177	202
		2000-	Venezuelan equine		
Forshey et al (2010)(102)	No Single Country	2007	encephalitis virus	13259	250
		2012-			
Fotso Fotso et al (2015)(103)	Algeria	2012	Borrelia spp.	257	4

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2005 -			
Gasem et al (2009)(104)	Indonesia	2006	<i>Leptospira</i> spp.	137	4
		2005-			
Gasem et al (2009)(104)	Indonesia	2006	Rickettsia (TGR)	137	4
			<i>Salmonella</i> (non-Typhi)		
Gordon et al (2010)(105)	Malawi	_	serovars	355	70
Hailu et al (2006)(106)	Ethiopia	-	Leishmania donovani	103	49
		2008-			
Hamilton et al (2011)(107)	Iraq	2008	Coxiella burnetii	18	8
		2007-			
Hem et al (2016)(108)	Cambodia	2009	<i>Leptospira</i> spp.	2044	17
		2005-			
Hidalgo et al (2008)(109)	Colombia	2005	Rickettsia (TGR)	120	14
		2010-			
Hidalgo et al (2013)(110)	Colombia	2011	Rickettsia (SFGR)	26	7
		2010-			
Hidalgo et al (2013)(110)	Colombia	2011	Rickettsia (TGR)	26	2
		1999-			
Ismail et al (2006)(111)	Egypt	2003	<i>Leptospira</i> spp.	886	141
		2002-			
Jennings et al (2007)(112)	Egypt	2003	Brucella spp.	4490	115
		1998-			
Joshi et al (2006)(113)	Nepal	2002	Leishmania donovani	996	284
		2007-	Japanese encephalitis		
Joshi et al (2013)(114)	India	2007	virus	152	4
		2009-			
Jung et al (2015)(115)	Republic of Korea	2013	Orientia tsutsugamushi	382	3

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2012-	Japanese encephalitis		
Kakoti et al (2013)(116)	India	2012	virus	223	49
		2009-			
Kamal et al (2013)(117)	Saudi Arabia	2011	Brucella spp.	101	50
		2001-			
Kendall et al (2010)(118)	Bangladesh	2001	<i>Leptospira</i> spp.	78	7
		2012-	Salmonella (non-Typhi)		
Kibuuka et al (2015)(119)	Uganda	2012	serovars	250	11
		2001			
Klempa et al (2010)(120)	Guinea	2005	Hantavirus	717	8
		2013-	Venezuelan equine		
Kocher et al (2016)(121)	Peru	2014	encephalitis virus	2054	22
		2008-			
Koizumi et al (2009)(122)	Sri Lanka	2008	<i>Leptospira</i> spp.	107	3
		2002-			
Kosoy et al (2010)(123)	Thailand	2003	Bartonella spp.	261	14
		2008-	Crimean-Congo		
Kuchuloria et al (2014)(124)	Georgia	2011	haemorrhagic fever virus	537	3
		2008-			
Kuchuloria et al (2014)(124)	Georgia	2011	Hantavirus	537	2
		2008-	Crimean-Congo		
Kuchuloria et al (2016)(125)	Georgia	2011	haemorrhagic fever virus	537	3
	-	2008-	_		
Kuchuloria et al (2016)(125)	Georgia	2011	Hantavirus	537	2
		2003-			
Kuloglu et al (2012)(126)	Turkey	2009	Rickettsia (SFGR)	126	97
Kumar et al (2014)(127)	India	2011-	Orientia tsutsugamushi	199	48

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2012			
		2009			
Kumar et al (2014)(128)	India	2010	West Nile virus	105	27
			Japanese encephalitis		
Kumar et al (2015)(129)	India	-	virus	108	5 4
		2001-			
LaRocque et al (2005)(130)	Bangladesh	2001	<i>Leptospira</i> spp.	359	63
	United Republic of	2008-	Salmonella (non-Typhi)		
Ley et al (2009)(131)	Tanzania	2009	serovars	1680	49
		1994 -			
Libraty et al (2007)(132)	Thailand	1999	<i>Leptospira</i> spp.	812	14
		2002 -			
Liu et al (2007)(133)	China	2004	Hantavirus	130	49
		2002 -			
Liu et al (2007)(133)	China	2004	Orientia tsutsugamushi	130	46
		2014 -			
Liu et al (2016)(134)	China	2014	Rickettsia (SFGR)	733	56
	United Republic of	2013-	Salmonella (non-Typhi)		
Mahende et al (2014)(135)	Tanzania	2013	serovars	808	2
		2008-			
Maina et al (2012)(136)	Kenya	2010	Rickettsia (SFGR)	699	50
		2001-			
Manock et al (2009)(137)	Ecuador	2004	Brucella spp.	275	4
		2001-			
Manock et al (2009)(137)	Ecuador	2004	Coxiella burnetii	33	15
		2001-			
Manock et al (2009)(137)	Ecuador	2004	Rickettsia (SFGR)	214	6

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2001-			
Manock et al (2009)(137)	Ecuador	2004	Rickettsia (TGR)	255	8
		2001-	Venezuelan equine		
Manock et al (2009)(137)	Ecuador	2004	encephalitis virus	229	2
		2003 -			
Matthias et al (2008)(138)	Peru	2006	<i>Leptospira</i> spp.	881	4 5
		2012-			
Maude et al (2015)(139)	Bangladesh	2012	Orientia tsutsugamushi	300	1
		2012-			
Maude et al (2015)(139)	Bangladesh	2012	Rickettsia (TGR)	300	2
	Lao People's	2008-			
Mayxay et al (2013)(140)	Democratic Republic	2010	<i>Leptospira</i> spp.	1932	137
	Lao People's	2008-			
Mayxay et al (2013)(140)	Democratic Republic	2010	Orientia tsutsugamushi	1871	170
	Lao People's	2008-			
Mayxay et al (2013)(140)	Democratic Republic	2010	Rickettsia (SFGR)	1849	2
	Lao People's	2008-			
Mayxay et al (2013)(140)	Democratic Republic	2010	Rickettsia (TGR)	1849	12
		2006-			
Mazyad et al (2007)(141)	Egypt	2006	Coxiella burnetii	150	5
		2004-			
McGready et al (2010)(142)	Thailand	2006	<i>Leptospira</i> spp.	203	5
		2004-			
McGready et al (2010)(142)	Thailand	2006	Orientia tsutsugamushi	203	44
		2004-			
McGready et al (2010)(142)	Thailand	2006	Rickettsia (TGR)	203	-14
Mediannikov et al (2010)(143)	Senegal	2008-	Rickettsia (SFGR)	204	8

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2009			
		2010-			
Mediannikov et al (2013)(144)	No Single Country	2012	Rickettsia (SFGR)	2612	321
		2010-			
Mediannikov et al (2014)(145)	Senegal	2011	Borrelia spp.	1566	115
	United Republic of		Salmonella (non-Typhi)		
Meremo et al (2012)(146)	Tanzania	-	serovars	346	12
	Iran (Islamic Republic	2011-			
Metanat et al (2014)(147)	of)	2011	Coxiella burnetii	105	23
		2012-	Salmonella (non-Typhi)		
Moon et al (2013)(148)	Mozambique	2012	serovars	258	28
		2005-	Venezuelan equine		
Morrison et al (2008)(149)	Peru	2006	encephalitis virus	1136	3 4
		2011-			
Mourembou et al (2015)(150)	Gabon	2012	Rickettsia (SFGR)	793	8
		2013-			
Mourembou et al (2015)(151)	Gabon	2014	Rickettsia (SFGR)	410	42
			Salmonella (non-Typhi)		
Mourembou et al (2016)(152)	Gabon	-	serovars	410	3
	United Republic of	2008-	Salmonella (non-Typhi)		
Mtove et al (2010)(153)	Tanzania	2009	serovars	1502	45
	United Republic of	2006-	Salmonella (non-Typhi)		
Mtove et al (2011)(154)	Tanzania	2010	serovars	6836	232
	United Republic of	2009-	Salmonella (non-Typhi)		
Mtove et al (2011)(155)	Tanzania	2010	serovars	965	1
		2008-			
Mueller et al (2014)(156)	Cambodia	2010	<i>Leptospira</i> spp.	1193	112

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2008 			
Mueller et al (2014)(156)	Cambodia	2010	Orientia tsutsugamushi	1193	47
		2008-			
Mueller et al (2014)(156)	Cambodia	2010	<i>Rickettsia</i> spp.	1193	2
		2012 			
Mukhtar et al (2015)(157)	Sudan	2014	Leishmania donovani	285	191
		2001 -			
Murdoch et al (2004)(158)	Nepal	2001	<i>Leptospira</i> spp.	26	11
		2005 -			
Murray et al (2011)(159)	Egypt	2007	<i>Leptospira</i> spp.	2441	47
	United Republic of		Salmonella (non-Typhi)		
Nadjm et al (2010)(160)	Tanzania	-	serovars	3639	160
	United Republic of	2007-	<i>Salmonella</i> (non-Typhi)		
Nadjm et al (2012)(161)	Tanzania	2007	serovars	198	5
		2003-			
Naheed et al (2008)(162)	Bangladesh	2004	Campylobacter spp.	867	1
		2008-			
Nandagopal et al (2012)(163)	India	2009	<i>Brucella</i> spp.	301	3
Natarajaseenivasan et al		2000-			
(2004)(164)	India	2000	<i>Leptospira</i> spp.	29	7
Natarajaseenivasan et al		2009-			
(2012)(165)	India	2009	<i>Leptospira</i> spp.	75	71
		2003-			
Ndip et al (2004)(166)	Cameroon	2003	Rickettsia (SFGR)	118	7
		2003-			
Ndip et al (2009)(167)	Cameroon	2003	<i>Ehrlichia</i> spp.	118	12
Njeru et al (2016)(168)	Kenya	2014-	Coxiella burnetii	448	10

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2015			
		2002-			
Nordstrand et al (2007)(169)	Togo	2004	Borrelia spp.	237	21
		2004-	Salmonella (non-Typhi)		
Onyango et al (2008)(170)	Kenya	2005	serovars	20	18
		2004	Salmonella (non-Typhi)		
Onyango et al (2009)(171)	Kenya	2005	serovars	40	20
		2007-			
Paris et al (2011)(172)	Thailand	2008	Orientia tsutsugamushi	138	26
		2010-	Salmonella (non-Typhi)		
Park et al (2016)(173)	No Single Country	2014	serovars	13431	73
		2008-			
Parola et al (2011)(174)	Senegal	2009	Borrelia spp.	206	27
		2000-	Salmonella (non-Typhi)		
Peters et al (2004)(175)	Malawi	2000	serovars	352	44
		2003-			
Phimda et al (2007)(176)	Thailand	2005	<i>Leptospira</i> spp.	296	55
		2003-			
Phimda et al (2007)(176)	Thailand	2005	Orientia tsutsugamushi	230	34
		2006-			
Pradhan et al (2012)(177)	Nepal	2007	Rickettsia (TGR)	1039	22
		2006-	Salmonella (non-Typhi)		
Pradhan et al (2012)(177)	Nepal	2007	serovars	1039	2
		2006-			
Prakash et al (2012)(178)	India	2008	Rickettsia (SFGR)	58	34
		2011-	Salmonella (non-Typhi)		
Preziosi et al (2015)(179)	Mozambique	2014	serovars	841	10

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
Rafizah et al (2013)(180)	Malaysia	-	<i>Leptospira</i> spp.	999	53
Rao et al (2005)(181)	India	-	<i>Leptospira</i> spp.	70	2
		2007-	Japanese encephalitis		
Rasul et al (2012)(182)	Bangladesh	2009	virus	130	2
		2008-			
Ratmanov et al (2013)(183)	Senegal	2011	Coxiella burnetii	874	4
		2000-	Japanese encephalitis		
Rayamajhi et al (2006)(184)	Nepal	2001	virus	117	54
		2000-	Japanese encephalitis		
Rayamajhi et al (2007)(185)	Nepal	2001	virus	94	54
		2006 -	Japanese encephalitis		
Rayamajhi et al (2011)(186)	Nepal	2008	virus	86	19
	United Republic of				
Reller et al (2011)(187)	Tanzania	-	Borrelia spp.	310	13
		2007-			
Reller et al (2012)(188)	Sri Lanka	2007	Orientia tsutsugamushi	883	17
		2007-			
Reller et al (2012)(188)	Sri Lanka	2007	Rickettsia (SFGR)	883	108
		2007-			
Reller et al (2012)(188)	Sri Lanka	2007	Rickettsia (TGR)	883	61
		2008 -			
Reller et al (2014) (189)	Nicaragua	2009	<i>Leptospira</i> spp.	748	17
		2006-			
Richards et al (2010)(190)	Kenya	2008	Rickettsia (SFGR)	163	6
		2000-			
Rijal et al (2004)(191)	Nepal	2002	Leishmania donovani	261	155

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2009 			
Rutvisuttinunt et al (2014)(192)	Nepal	2010	West Nile virus	2046	14
Saisongkorh et al (2004)(193)	Thailand	-	Orientia tsutsugamushi	36	9
		2005-			
Sarih et al (2009)(194)	Morocco	2006	Borrelia spp.	127	23
		2010-	Japanese encephalitis		
Sarkar et al (2012)(195)	India	2010	virus	135	36
		2006-			
Schoepp et al (2014)(196)	Sierra Leone	2008	Lassa virus	253	7
		2006-			
Schoepp et al (2014)(196)	Sierra Leone	2008	Rift Valley fever virus	253	5
		2009 -			
Shukla et al (2012)(197)	India	2010	West Nile virus	105	27
		2003 -	Japanese encephalitis		
Singh et al (2009)(198)	Nepal	2004	virus	107	19
		2008-	Japanese encephalitis		
Singh et al (2014)(199)	India	2011	virus	1410	10
		2015-			
Sinyange et al (2016)(200)	Zambia	2015	Yersinia pestis	12	6
		2008-			
Socolovschi et al (2010)(201)	Senegal	2009	Rickettsia (SFGR)	134	8
		2011-			
Sokhna et al (2013)(202)	Senegal	2012	Bartonella spp.	440	23
		2011-			
Sokhna et al (2013)(202)	Senegal	2012	Borrelia spp.	440	35
		2011-			
Sokhna et al (2013)(202)	Senegal	2012	Coxiella burnetii	440	2

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2011-			
Sokhna et al (2013)(202)	Senegal	2012	Rickettsia (SFGR)	<u>440</u>	28
		2000-			
Sonthayanon et al (2006)(203)	Thailand	2001	Orientia tsutsugamushi	722	183
		2012-	Salmonella (non-Typhi)		
Sothmann et al (2015)(204)	Ghana	2012	serovars	2306	24
		2009-			
Sow et al (2016)(205)	Senegal	2013	Rift Valley fever virus	13845	1
Stremlau et al (2015)(206)	Nigeria	-	Lassa virus	195	104
	<u> </u>	1995-			
Suharti et al (2009)(207)	Indonesia	1996	Hantavirus	60	5
Suputtamongkol et al		2000-			
(2009)(208)	Thailand	2003	Orientia tsutsugamushi	1663	192
Suputtamongkol et al		2000-			
(2009)(208)	Thailand	2003	Rickettsia (TGR)	1663	18
Suputthamongkol et al		1999-			
(2005)(209)	Thailand	2000	Hantavirus	115	8
		2001-			
Suttinont et al (2006)(210)	Thailand	2002	<i>Leptospira</i> spp.	845	293
		2003-	Japanese encephalitis		
Swami et al (2008)(211)	India	2005	virus	40	9
		2010-	Japanese encephalitis		
Taraphdar et al (2012)(212)	India	2010	virus	58	23
		1996-	<i>Salmonella</i> (non-Typhi)		
Tezcan et al (2006)(213)	Turkey	2004	serovars	621	1
		2001-			
Thipmontree et al (2014)(214)	Thailand	2012	Leptospira spp.	726	118

First author, year of		Study		Number of	Number of
publication and reference	Country	Period	Pathogen	Individuals Tested	Individuals Positive
		2008-			
Thompson et al (2015)(215)	Nepal	2011	Hantavirus	125	2
		2008-			
Thompson et al (2015)(215)	Nepal	2011	Rickettsia (TGR)	125	21
		2009-			
Tigoi et al (2015)(216)	Kenya	2012	West Nile virus	379	47
		2012-	Salmonella (non-Typhi)		
Wiersinga et al (2015)(217)	Gabon	2013	serovars	941	5
		2001-			
Wuthiekanun et al (2007)(218)	Thailand	2002	<i>Leptospira</i> spp.	989	83
		2004-	Anaplasma		
Zhang et al (2011)(219)	China	2006	phagocytophilum	26	8
		2009-	Anaplasma		
Zhang et al (2013)(220)	China	2010	phagocytophilum	421	46
		2012-			
Zhou et al (2013)(221)	China	2013	Babesia microti	449	10
		2001-			
Zimmerman et al (2008)(222)	Nepal	2001	Rickettsia (TGR)	756	50

1440 Table 4: Summary of number of studies from each global region represented in the study 1441 dataset

1442

WHO Region	Number (%) of malaria endemic countries contributing data	Number (%) of studies contributing data (n=174 ¹)
Africa	17 of 44 (38·6%)	56 (32·2%)
Americas	8 of 23 (34.8%)	16 (9·2%)
Eastern Mediterranean	8 of 14 (57%)	17 (9-8%)
Europe	2 of 9 (22-2%)	5 (2.9%)
South-East Asia	6 of 10 (60.0%)	63 (36·2%)
Western Pacific	6 of 10 (60.0%)	17 (9·8%)

1443 ¹Table includes data from 174 of 181 articles included in the review, excluding 7 articles

1444 reporting data from multiple countries excluded for this analysis.

1447 1448	Figures
1449 1450 1451 1452 1453 1454	Figure 1: Flow diagram of records and articles assessed for the review. Among the 46 articles excluded because the full text was not accessible in English, the breakdown of languages was as follows: French (13 articles); Spanish (11 articles); Turkish (9 articles); Mandarin (6 articles); Portuguese (2 articles); Hebrew (2 articles); Arabic (1 article); Danish (1 article) and Russian (1 article).
1455 1456	Figure 2: Map illustrating the malaria-endemic countries included in the study and number of articles contributing data for each country. (indicated by colour shading).
1457 1458 1459 1460	Figure 3: Barchart showing the number of articles contributing data for each country included in the study, displayed by country and WHO region.
1460 1461 1462 1463	Figure 4 <u>Figure 3</u> : Barchart showing the number of articles that looked for, reported diagnosis of and contributed data for each zoonosis. of 40, 31 and 30 zoonoses respectively. These data were tabulated for all pathogenszoonoses (n=40) and articles included in the
1464 1465 1466	review: (n=244). Bar colour indicates pathogen type and shading differentiates studies that i) contribute data meeting study diagnostic criteria (left hand bar sections with darkest shading); n=30 pathogens indicated by *), ii) report diagnosis with approaches that do not
1467 1468 1469	meet study diagnostic criteria (central bar sections with <u>partial shadinglighter shading, n=31</u> <u>pathogens that comprised the 30 with extracted data and <i>Escherichia coli</i>), iii) report looking for but not diagnosing a zoonosis (right hand bar section with lightest shading, n=40</u>
1470 1471 1472	pathogens, also including Burkholderia spp. Tick borne encephalitis virus, Marburg virus, Rabies virus, Newcastle Disease virus, Mycobacterium bovis, Francisella tularensis, Ebola virus and Cryptosporidium parvum).
1473 1474 1475 1476	Figure 4: Proportion of fevers attributed to each zoonosis. <u>The plot includes one data point per study and pathogen combination</u> . <u>The different panels</u> include data from different WHO regions. Point colour indicates the coding for the risk of
1477 1478 1479	bias for the representativeness of the febrile population and point size is proportional to the number of individuals tested. Points are jittered on the x axis and shaded to visualize overlapping points
1480 1481 1482	Figure 5: Barchart showing number of articles from each global region contributing data for each of 29 zoonoses. Plot papels indicate the WHO defined global region and bar colour indicates type of pathogen
1483 1484 1485	Figure 6 Figure 5: Venn diagram illustrating the associations between febrile population clinical
1485 1486 1487	presentation and pathogens identified. Circles are scaled to the number of pathogens detected in each type of patient population. Undifferentiated, shown in green, 22 pathogens; febrile
1489 1490 1491 1492	pathogens; febrile haemmorhagic, shown in orange, 4 pathogens, <i>Leishmania donavanii</i> , <i>Toxoplasma gondii, Rickettsia</i> spp., and <i>Yersinia pestis</i> are not represented as they were only detected in febrile populations classified as mixed.

1493	Figure 7: Proportion of fevers attributed to each zoonosis. Circles are scaled to the number of
1494	pathogens detected in each type of febrile population. Undifferentiated, shown in green, 23
1495	pathogens (including pathogens also seen in other populations); febrile neurological, shown
1496	in red, four pathogens; febrile gastrointestinal, shown in blue, two pathogens; febrile
1497	respiratory, shown in purple, one pathogen, febrile haemorrhagic, shown in yellow, seven
1498	pathogens. Five pathogens are not represented in the figure as they were only detected in
1499	febrile populations classified as co-morbid (Listeria spp., Pasteurella spp. and Toxoplasma
1500	gondii) or in febrile populations with a specific febrile aetiology suspected (Leishmania
1501	donavani, and Yersinia pestis).
1502	
1503	The plot includes one data point per study and pathogen combination. Point colour indicates
1504	pathogen type and point size is proportional to the number of individuals tested. Points are
1505	jittered on the x axis and shaded to visualize overlapping points.
1506	

I