33 research outputs found

    Forest canopy restoration has indirect effects on litter decomposition and no effect on denitrification

    Get PDF
    Forest restoration has potential to recover degraded ecosystem functions in disturbed environments. Decomposition and denitrification are two critical functions involved in forest nutrient cycling that are often compromised in degraded ecosystems. As forest canopy structure develops following initial plantings, it may indirectly impact ecosystem functions by altering abiotic conditions. It is likely, however, that there are other abiotic factors that affect decomposition and denitrification that are unrelated to forest canopy structure. Here, we aimed to determine whether forest canopy openness, topography, and soil sand content would affect litter decomposition and denitrification by regulating the microclimate, the herbaceous plant layer, soil chemistry, and soil moisture. Research occurred in restored native temperate rainforest patches in two New Zealand cities. Urban forests are an excellent context for measuring impact of canopy restoration on ecosystem properties such as microclimate due to the extreme swings in city conditions (e.g., urban heat island). Decomposition rates were determined using leaf litter bags and denitrification rates through denitrification enzyme activity assays. We used structural equation modeling to quantify the direct and indirect drivers of these ecosystem functions. Results indicated that decomposition rates were positively related to soil moisture, relative humidity, and herbaceous plant cover. Interestingly, forest canopy openness indirectly affected decomposition through counteracting forces, meaning greater canopy openness in young forests permitted dense herbaceous plant growth which enhanced decomposition, while less canopy openness in older forests enhanced humidity levels which increased decomposition. Denitrification was negatively related to soil pH and positively related to soil moisture, but these abiotic factors were unrelated to the forest canopy. Discovering drivers of ecosystem functions can improve approaches to the restoration of degraded ecosystems, especially in disturbed urban areas. Identifying counteracting effects on ecosystem functions could improve management by focusing restoration actions on specific drivers to elicit desired changes. Some ecosystem processes, like denitrification, are not affected by forest canopy restoration or management, but are instead driven by edaphic and landscape factors

    Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand

    Get PDF
    Phytoplankton processes in subantarctic (SA) waters southeast of New Zealand were studied during austral autumn and spring 1997. Chlorophyll a (0.2–0.3 ÎŒg L−1) and primary production (350–650 mg C m−2 d−1) were dominated by cells 1 nmol kg−1, there was little evidence of Fe-stressed algal populations, and Fυ/Fm approached 0.60 at the STC. In addition to these trends, waters of SA origin were occasionally observed within the STC and north of the STC, and thus survey data were interpreted with caution. In vitro Fe enrichment incubations in SA waters resulted in a switch from flavodoxin expression to that of ferredoxin, indicating the alleviation of Fe stress. In another 6-day experiment, iron-mediated increases in chlorophyll a (in particular, increases in large diatoms) were of similar magnitude to those observed in a concurrent Si/Fe enrichment; ambient silicate levels were 4 ÎŒM. A concurrent in vitro Fe enrichment, at irradiance levels comparable to the calculated mean levels experienced by cells in situ, resulted in relatively small increases (approximately twofold) in chlorophyll a. Thus, in spring, irradiance and Fe may both control diatom growth. In contrast, during summer, as mean irradiance increases and silicate levels decrease, Fe limitation, Fe/Si colimitation, or silicate limitation may determine diatom growth
    corecore