8 research outputs found

    The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae.

    Get PDF
    Intracellular survival of Salmonella relies on the activity of proteins translocated into the host cell by type III secretion systems (T3SS). The protein kinase activity of the T3SS effector SteC is required for F-actin remodeling in host cells, although no SteC target has been identified so far. Here we show that expression of the N-terminal non-kinase domain of SteC down-regulates the mating and HOG pathways in Saccharomyces cerevisiae. Epistasis analyses using constitutively active components of these pathways indicate that SteC inhibits signaling at the level of the GTPase Cdc42. We demonstrate that SteC interacts through its N-terminal domain with the catalytic domain of Cdc24, the sole S. cerevisiae Cdc42 guanine nucleotide exchange factor (GEF). SteC also binds to the human Cdc24-like GEF protein Vav1. Moreover, expression of human Cdc42 suppresses growth inhibition caused by SteC. Of interest, the N-terminal SteC domain alters Cdc24 cellular localization, preventing its nuclear accumulation. These data reveal a novel functional domain within SteC, raising the possibility that this effector could also target GTPase function in mammalian cells. Our results also highlight the key role of the Cdc42 switch in yeast mating and HOG pathways and provide a new tool to study the functional consequences of Cdc24 localization

    Killing of Candida albicans Filaments by Salmonella enterica Serovar Typhimurium Is Mediated by sopB Effectors, Parts of a Type III Secretion Systemâ–ż

    No full text
    Although bacterial-fungal interactions shape microbial virulence during polymicrobial infections, only a limited number of studies have evaluated this interaction on a genetic level. We report here that one interaction is mediated by sopB, an effector of a type III secretion system (TTSS) of Salmonella enterica serovar Typhimurium. In these studies, we screened 10 TTSS effector-related mutants and determined their role in the killing of C. albicans filaments in vitro during coinfection in planktonic environments. We found that deleting the sopB gene (which encodes inositol phosphatase) was associated with a significant decrease in C. albicans killing at 25°C after 5 days, similar to that caused by the deletion of sipB (which encodes TTSS translocation machinery components). The sopB deletion dramatically influenced the killing of C. albicans filaments. It was associated with repressed filamentation in the Caenorhabditis elegans model of C. albicans-S. Typhimurium coinfection, as well as with biofilm formation by C. albicans. We confirmed that SopB translocated to fungal filaments through SipB during coinfection. Using quantitative real-time PCR assays, we found that the Candida supernatant upregulated the S. Typhimurium genes associated with C. albicans killing (sopB and sipB). Interestingly, the sopB effector negatively regulated the transcription of CDC42, which is involved in fungal viability. Taken together, these results indicate that specific TTSS effectors, including SopB, play a critical role in bacterial-fungal interactions and are important to S. Typhimurium in order to selectively compete with fungal pathogens. These findings highlight a new role for TTSS of S. Typhimurium in the intestinal tract and may further explain the evolution and maintenance of these traits

    Graphene oxide nanocomposites based room temperature gas sensors: A review

    No full text
    Over the last few decades, various volatile organic compounds (VOCs) have been widely used in the processing of building materials and this practice adversely affected the environment i.e. both indoor and outdoor air quality. A cost-effective solution for detecting a wide range of VOCs by sensing approaches includes chemiresistive, optical and electrochemical techniques. Room temperature (RT) chemiresistive gas sensors are next-generation technologies desirable for self-powered or battery-powered instruments utilized in monitoring emissions that are associated with indoor/outdoor air pollution and industrial processes. In this review, a state-of-the-art overview of chemiresistive gas sensors is provided based on their attractive analytical characteristics such as high sensitivity, selectivity, reproducibility, rapid assay time and low fabrication cost. The review mainly discusses the recent advancement and advantages of graphene oxide (GO) nanocomposites-based chemiresistive gas sensors and various factors affecting their sensing performance at RT. Besides, the sensing mechanisms of GO nanocomposites-based chemiresistive gas sensors derived using metals, transition metal oxides (TMOs) and polymers were discussed. Finally, the challenges and future perspectives of GO nanocomposites-based RT chemiresistive gas sensors are addressed

    Retinal Glia

    No full text
    corecore