57 research outputs found

    Rotational Viscosity in Linear Irreversible Thermodynamics and its Application to Neutron Stars

    Get PDF
    A generalized analysis of the local entropy production of a simple fluid is used to show that, if intrinsic angular momentum is taken into account, rotational viscosity must arise in the linear non-equilibrium regime. As a consequence, the stress tensor of dense rotating matter, such as the one present in neutron stars, posseses a significant non-vansishing antisymmetrical part. A simple argument suggests that, due to the extreme magnetic fields present in neutron stars, the relaxation time associated to rotational viscosity is large (approx 10^{21} s). The formalism leads to generalized Navier-Stokes equations useful in neutron star physics which involve vorticity in the linear regime.Comment: 6 pages Revtex; to appear J. Nonequilibrium Therm

    Structure formation in the presence of relativistic heat conduction: corrections to the Jeans wave number with a stable first order in the gradients formalism

    Full text link
    The problem of structure formation in relativistic dissipative fluids was analyzed in a previous work within Eckart's framework, in which the heat flux is coupled to the hydrodynamic acceleration, additional to the usual temperature gradient term. It was shown that in such case, the pathological behavior of fluctuations leads to the disapperance of the gravitational instability responsible for structure formation. In the present work the problem is revisited now using a constitutive equation derived from relativistic kinetic theory. The new relation, in which the heat flux is not coupled to the hydrodynamic acceleration, leads to a consistent first order in the gradients formalism. In this case the gravitational instability remains, and only relativistic corrections to the Jeans wave number are obtained. In the calculation here shown the non-relativistc limit is recovered, opposite to what happens in Eckart's case.Comment: 10 pages, no figure

    Modelling and analysis of time dependent processes in a chemically reactive mixture

    Get PDF
    In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in themodel in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.The paper is partially supported by the Research Centre of Mathematics of the University of Minho, with the Portuguese Funds from the Foundation for Science and Technology (FCT) through the Project UID/MAT/00013/2013. We wish to thank the anonymous Referees for their valuable comments and suggestions that helped us to improve the paper.info:eu-repo/semantics/publishedVersio

    Hydrodynamic analysis of sound wave propagation in a reactive mixture confined between two parallel plates

    Get PDF
    The aim of this work is to study the problem of sound wave propagation through a binary mixture undergoing a reversible chemical reaction of type A + A = B + B, when the mixture is con fined between two flat, info nite and parallel plates. One plate is stationary, whereas the other oscillates harmonically in time and constitutes an emanating source of sound waves that propagate in the mixture. The boundary conditions imposed in our problem correspond to assume that the plates are impenetrable and that the mixture chemically react at the surface plates, reaching the chemical equilibrium instantaneously. The reactive mixture is described by the Navier-Stokes equations derived from the Boltzmann equation in a chemical regime for which the chemical reaction is in its nal stage. Explicit expressions for transport coe fficients and chemically production rates are supplemented by the kinetic theory. Starting from this setting, we study the dynamics of the sound waves in the reactive mixture in the low frequency regime and investigate the influence of the chemical reaction on the properties of interest in the considered problem. We then compute the amplitude and phase pro les of the relevant macroscopic quantities, showing how they vary in the reactive flow between the plates in dependence on several factors, as the chemical activation energy, concentration of products and reactants, as well as oscillation speed parameter.Fundação para a Ciência e a Tecnologia (UID/MAT/00013/2013)info:eu-repo/semantics/acceptedVersio

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway

    Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity

    Get PDF
    International audienceAbstractCirculating monocytes in several mammalian species can be subdivided into functionally distinct subpopulations based on differential expression of surface molecules. We confirm that bovine monocytes express CD172a and MHC class II with two distinct populations of CD14+CD16low/-CD163+ and CD14−CD16++CD163low- cells, and a more diffuse population of CD14+CD16+CD163+ cells. In contrast, ovine monocytes consisted of only a major CD14+CD16+ subset and a very low percentage of CD14−CD16++cells. The bovine subsets expressed similar levels of CD80, CD40 and CD11c molecules and mRNA encoding CD115. However, further mRNA analyses revealed that the CD14−CD16++ monocytes were CX3CR1highCCR2low whereas the major CD14+ subset was CX3CR1lowCCR2high. The former were positive for CD1b and had lower levels of CD11b and CD86 than the CD14+ monocytes. The more diffuse CD14+CD16+ population generally expressed intermediate levels of these molecules. All three populations responded to stimulation with phenol-extracted lipopolysaccharide (LPS) by producing interleukin (IL)-1β, with the CD16++ subset expressing higher levels of IL-12 and lower levels of IL-10. The CD14−CD16++ cells were more endocytic and induced greater allogeneic T cell responses compared to the other monocyte populations. Taken together the data show both similarities and differences between the classical, intermediate and non-classical definitions of monocytes as described for other mammalian species, with additional potential subpopulations. Further functional analyses of these monocyte populations may help explain inter-animal and inter-species variations to infection, inflammation and vaccination in ruminant livestock

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore