223 research outputs found

    Evaluating virological outcomes in people with HIV on stable antiretroviral therapy with reduced frequency of HIV viral load monitoring during the COVID-19 pandemic

    Get PDF
    OBJECTIVE: In response to the COVID-19 pandemic, HIV outpatient attendances were restricted from March 2020, resulting in reduced frequency of HIV viral load (VL) monitoring (previously 6-monthly) in clinically stable and virologically suppressed people living with HIV (PLWH). We investigated virological outcomes during this period of reduced monitoring and compared with the previous year, prior to the COVID-19 pandemic. METHODS: People living with HIV with undetectable VL (<200 HIV RNA copies /mL) on antiretroviral therapy (ART) were identified from March 2018 to February 2019. We determined VL outcomes during the pre-COVD-19 period (March 2019–February 2020) and the COVID-19 period (March 2020–February 2021) when monitoring was restricted. Frequency and longest durations between VL tests in each period were evaluated, and virological sequelae in those with detectable VL were determined. RESULTS: Of 2677 PLWH virologically suppressed on ART (March 2018–February 2019), VLs were measured and undetectable in 2571 (96.0%) and 2003 (77.9%) in the pre-COVID and COVID periods, respectively. Mean (SD) numbers of VL tests were 2.3 (1.08) and 1.1 (0.83) and mean longest duration between VL tests was 29.5 weeks (SD 8.25, 3.1% were ≥12 months) and 43.7 weeks (12.64, 28.4% were ≥12 months), in the pre-COVID and COVID periods, respectively. Of 45 individuals with one or more detectable VL during the COVID-19 period, two developed new drug resistance mutations. CONCLUSION: Reduced VL monitoring was not associated with poorer virological outcomes in the majority of stable individuals receiving ART. One in 20 individuals had not returned for VL testing after ≥31 months and the risk of harm in these individuals is unknown

    Controlling a magnetic Feshbach resonance with laser light

    Full text link
    The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additional flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do

    Oatmeal particle size alters glycemic index but not as a function of gastric emptying rate

    Get PDF
    The aim of this study was to determine the extent to which oat particle size in a porridge could alter glucose absorption, gastric emptying, gastrointestinal hormone response, and subjective feelings of appetite and satiety. Porridge was prepared from either oat flakes or oat flour with the same protein, fat, carbohydrate, and mass. These were fed to eight volunteers on separate days in a crossover study, and subjective appetite ratings, gastric contents, and plasma glucose, insulin, and gastrointestinal hormones were determined over a period of 3 h. The flake porridge gave a lower glucose response than the flour porridge, and there were apparent differences in gastric emptying in both the early and late postprandial phases. The appetite ratings showed similar differences between early- and late-phase behavior. The structure of the oat flakes remained sufficiently intact to delay their gastric emptying, leading to a lower glycemic response, even though initial gastric emptying rates were similar for the flake and flour porridge. This highlights the need to take food structure into account when considering relatively simple physiological measures and offering nutritional guidance

    Estimating background rates of Guillain-Barré Syndrome in Ontario in order to respond to safety concerns during pandemic H1N1/09 immunization campaign

    Get PDF
    Abstract Background The province of Ontario, Canada initiated mass immunization clinics with adjuvanted pandemic H1N1 influenza vaccine in October 2009. Due to the scale of the campaign, temporal associations with Guillain-Barré syndrome (GBS) and vaccination were expected. The objectives of this analysis were to estimate the number of background GBS cases expected to occur in the projected vaccinated population and to estimate the number of additional GBS cases which would be expected if an association with vaccination existed. The number of influenza-associated GBS cases was also determined. Methods Baseline incidence rates of GBS were determined from published Canadian studies and applied to projected vaccine coverage data to estimate the expected number of GBS cases in the vaccinated population. Assuming an association with vaccine existed, the number of additional cases of GBS expected was determined by applying the rates observed during the 1976 Swine Flu and 1992/1994 seasonal influenza campaigns in the United States. The number of influenza-associated GBS cases expected to occur during the vaccination campaign was determined based on risk estimates of GBS after influenza infection and provincial influenza infection rates using a combination of laboratory-confirmed cases and data from a seroprevalence study. Results The overall provincial vaccine coverage was estimated to be between 32% and 38%. Assuming 38% coverage, between 6 and 13 background cases of GBS were expected within this projected vaccinated cohort (assuming 32% coverage yielded between 5-11 background cases). An additional 6 or 42 cases would be expected if an association between GBS and influenza vaccine was observed (assuming 32% coverage yielded 5 or 35 additional cases); while up to 31 influenza-associated GBS cases could be expected to occur. In comparison, during the same period, only 7 cases of GBS were reported among vaccinated persons. Conclusions Our analyses do not suggest an increased number of GBS cases due to the vaccine. Awareness of expected rates of GBS is crucial when assessing adverse events following influenza immunization. Furthermore, since individuals with influenza infection are also at risk of developing GBS, they must be considered in such analyses, particularly if the vaccine campaign and disease are occurring concurrently

    Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT) for postoperative high-risk oral cavity cancer.</p> <p>Methods</p> <p>From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84%) or without (16%) chemotherapy.</p> <p>Results</p> <p>The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively.</p> <p>Conclusions</p> <p>HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings.</p

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Identification of Five Developmental Processes during Chondrogenic Differentiation of Embryonic Stem Cells

    Get PDF
    Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis.ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place.We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration

    Evaluation of skin dose associated with different frequencies of bolus applications in post-mastectomy three-dimensional conformal radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study aimed to calculate chest-wall skin dose associated with different frequencies of bolus applications in post-mastectomy three-dimensional conformal radiotherapy (3D-CRT) and to provide detailed information in the selection of an appropriate bolus regimen in this clinical setting.</p> <p>Methods</p> <p>CT-Simulation scans of 22 post-mastectomy patients were used. Chest wall for clinical target volume (CTV) and a volume including 2-mm surface thickness of the chest wall for skin structures were delineated. Precise PLAN 2.11 treatment planning system (TPS) was used for 3D-CRT planning. 50 Gy in 25 fractions were prescribed using tangential fields and 6-MV photons. Six different frequencies of bolus applications (0, 5, 10, 15, 20, and 25) were administered. Cumulative dose-volume histograms were generated for each bolus regimen. The minimum, maximum and mean skin doses associated with the bolus regimens were compared. To test the accuracy of TPS dose calculations, experimental measurements were performed using EBT gafchromic films.</p> <p>Results</p> <p>The mean, minimum and maximum skin doses were significantly increased with increasing days of bolus applications (p < 0.001). The minimum skin doses for 0, 5, 10, 15, 20, and 25 days of bolus applications were 73.0% ± 2.0%, 78.2% ± 2.0%, 83.3% ± 1.7%, 88.3% ± 1.6%, 92.2% ± 1.7%, and 93.8% ± 1.8%, respectively. The minimum skin dose increments between 20 and 25 (1.6% ± 1.0%), and 15 and 20 (4.0% ± 1.0%) days of bolus applications were significantly lower than the dose increments between 0 and 5 (5.2% ± 0.6%), 5 and 10 (5.1% ± 0.8%), and 10 and 15 (4.9% ± 0.8%) days of bolus applications (p < 0.001). The maximum skin doses for 0, 5, 10, 15, 20, and 25 days of bolus applications were 110.1% ± 1.1%, 110.3% ± 1.1%, 110.5% ± 1.2%, 110.8% ± 1.3%, 111.2% ± 1.5%, and 112.2% ± 1.7%, respectively. The maximum skin dose increments between 20 and 25 (1.0% ± 0.6%), and 15 and 20 (0.4% ± 0.3%) days of bolus applications were significantly higher than the dose increments between 0 and 5 (0.2% ± 0.2%), 5 and 10 (0.2% ± 0.2%), and 10 and 15 (0.2% ± 0.2%) days of bolus applications (p ≤ 0.003). The TPS overestimated the near-surface dose 10.8% at 2-mm below the skin surface.</p> <p>Conclusion</p> <p>In post-mastectomy 3D-CRT, using a 1-cm thick bolus in up to 15 of the total 25 fractions increased minimum skin doses with a tolerable increase in maximum doses.</p

    In vitro metabolism of beclomethasone dipropionate, budesonide, ciclesonide, and fluticasone propionate in human lung precision-cut tissue slices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The therapeutic effect of inhaled corticosteroids (ICS) may be affected by the metabolism of the drug in the target organ. We investigated the <it>in vitro </it>metabolism of beclomethasone dipropionate (BDP), budesonide (BUD), ciclesonide (CIC), and fluticasone propionate (FP) in human lung precision-cut tissue slices. CIC, a new generation ICS, is hydrolyzed by esterases in the upper and lower airways to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC).</p> <p>Methods</p> <p>Lung tissue slices were incubated with BDP, BUD, CIC, and FP (initial target concentration of 25 μM) for 2, 6, and 24 h. Cellular viability was assessed using adenosine 5'-triphosphate content and protein synthesis in lung slices. Metabolites and remaining parent compounds in the tissue samples were analyzed by HPLC with UV detection.</p> <p>Results</p> <p>BDP was hydrolyzed to the pharmacologically active metabolite beclomethasone-17-monopropionate (BMP) and, predominantly, to inactive beclomethasone (BOH). CIC was hydrolyzed initially to des-CIC with a slower rate compared to BDP. A distinctly smaller amount (approximately 10-fold less) of fatty acid esters were formed by BMP (and/or BOH) than by BUD or des-CIC. The highest relative amounts of fatty acid esters were detected for BUD. For FP, no metabolites were detected at any time point. The amount of drug-related material in lung tissue (based on initial concentrations) at 24 h was highest for CIC, followed by BUD and FP; the smallest amount was detected for BDP.</p> <p>Conclusion</p> <p>The <it>in vitro </it>metabolic pathways of the tested ICS in human lung tissue were differing. While FP was metabolically stable, the majority of BDP was converted to inactive polar metabolites. The formation of fatty acid conjugates was confirmed for BMP (and/or BOH), BUD, and des-CIC.</p

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10
    corecore