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Abstract 

Scope: The aim of this study was to determine the extent to which oat particle size in a 

porridge could alter glucose absorption, gastric emptying, gastrointestinal hormone response 

and subjective feelings of appetite and satiety.  

Method and results: Porridge was prepared from either oat flakes or oat flour with the same 

protein, fat, carbohydrate and mass. These were fed to eight volunteers on separate days in 

a crossover study and subjective appetite ratings, gastric contents and plasma glucose, 

insulin, and gastrointestinal hormones were determined over a period of three hours. The 

flake porridge gave a lower glucose response than the flour porridge and there were 

apparent differences in gastric emptying in both the early and late post prandial phases. The 

appetite ratings showed similar differences between early and late phase behavior.  

Conclusions: The structure of the oat flakes remained sufficiently intact to delay their 

gastric emptying leading to a lower glycemic response, even though initial gastric emptying 

rates were similar for the flake and flour porridge. This highlights the need to take food 

structure into account when considering relatively simple physiological measures and 

offering nutritional guidance. 

 

New and Noteworthy 

The impact of food structure on glycemic response even in simple foods such as porridge is 

dependent on both timing of gastric emptying and the composition of what is emptied as well 

as duodenal starch digestion. Thus structure should be account for when considering 

relatively simple physiological measures and offering nutritional guidance. 
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1. Introduction 

The food industry is faced with the task of producing highly palatable foods that meet 

consumer preferences and comply with their nutritional needs. However, the overabundance 

of very nutritious food has brought with it a number of challenges associated with adverse 

health outcomes. Of special concern is the dramatic increase in obesity and metabolic 

diseases. Therefore now, more than ever we need to understand the mechanisms through 

which rates of nutrient release may be controlled, affecting physiological responses to food as 

well as sensations of appetite and satiety. The way that dietary components and food structure 

modify digestion kinetics may reveal foods with the potential to reduce risk factors associated 

with metabolic diseases such as type 2 diabetes, e.g. hyperglycemia and elevated blood 

pressure.  

Recent research indicates that oats (Avena sativa) contain bioactive components that have a 

range of positive health benefits, including effects on lipidemic and glycemic control (14, 31), 

as well as satiety (3). Soluble fiber may promote satiety, by slowing down digestion resulting 

in increased gastric retention and feelings of fullness (15). The presence of soluble fiber has 

also been shown to alter the secretion of gastrointestinal hormones (4) and aid body weight 

regulation (33).  

During the digestion of food there are two modes of gastric emptying. Firstly by eroding the 

solid bolus of food in the stomach from the outside, where the food has been most exposed 

to acid and enzymes. The chime may then be squeezed through the pylorus into the 

duodenum if the particle size is sufficiently small (22, 23). When the gastric contents are more 

fluid or semi-solid (e.g. soup or porridge), emptying occurs primarily during periods of 

quiescence in antral pressure activity and, by implication, in antral contractile activity (13) and 

thus may empty from the center of the stomach, a zone that has not been subjected to 

significant pH change or exposed to gastric enzymes (29). In the antrum, selective 'sieving' 

permits the rapid passage of liquids and smaller food particles while the larger particles are 

retained for further processing, although this is effected by the viscosity of the gastric contents 



(24). The size cut-off means that particles larger than about 3 mm (17) tend to be retained 

longer, although not indefinitely (34). The rate at which food is emptied from the stomach 

depends on a number of factors but one is the energy density of the food (11, 12). As far back 

as the 1970s it was shown that energy density has an inverse effect on gastric emptying. 

However, in addition, the rheological properties of the gastric content play an important role 

on gastric processing (9) and emptying rate. Although both are important, increasing the 

viscosity is considered less effective than increasing the energy density in slowing gastric 

emptying (7).  

A number of foods have traditionally been eaten because they are perceived as healthy, and 

this includes oat porridge. However, studies have shown that the way that the oats are 

processed has a strong influence on glycemic index (36). In particular, the modern trend 

towards quick cook oats is likely to have a significant effect on the glycemic index of the final 

product. It is not clear, though, whether this difference is a result of alterations in gastric 

residence time or intestinal starch hydrolysis. Indeed given the high beta-glucan content of 

oats it could be that release of this polymer significantly alters intestinal viscosity, or has a 

similar influence on gastric residence time because although energy density affects gastric 

emptying, it is also effected by viscosity (7). The milling process of oat flakes increases the 

accessibility of nutrients and fiber, including beta-glucan, and this may influence gastric 

emptying dynamics and glycemic response. Thus, our study investigated the effect of oat grain 

processing upon gastric emptying rates, glycemic response and satiety. Study participants 

consumed two isocaloric porridges prepared from finely milled oats and flaked oats, and MRI 

imaging was used to study gastric volumes and layering. Subjective feelings of appetite and 

satiety were recorded, as well as levels of blood glucose, insulin and GI hormones. The overall 

aim was to understand how food structure is involved with some of the mechanisms that 

regulate hunger, appetite and satiety. Our hypothesis was that greater release of starch and 

soluble fiber from the finely milled porridge would generate a higher viscosity in the stomach 

than the flaked porridge. In combination with the more effective nutrient release from the finely 



ground porridge this would lead to a lower glycemic response, slower gastric emptying and 

greater feelings of fullness for longer. 

 

2. Materials and Methods 

2.1 The meals 

The two meals used in this crossover were based on the same porridge recipe. The 

composition of the two meals is given in Table 1. Both oat samples had the same composition 

as they were produced from the same batch of Norwegian Belinda oats. The oat flakes were 

of commercial quality, provided by Lantmännen Cerealia, Moss, Norway. The oat flakes were 

milled into flour using a hammer mill (Retsch ZM 200, Dale, Norway) with a 0.5 mm screen. 

The ȕ-glucan content of the oats was 4.52 g / 100 g dry weight as determined by an enzymatic 

method using a mixed linkage beta-glucan assay kit from Megazyme (Megazyme 

International, Bray, Ireland). Oat flake or oat flour porridge was prepared on the morning of 

the study using the following protocol: Skimmed milk, water and margarine were gently heated 

until the margarine melted. Then either oat flakes or oat flour were added and well mixed. The 

mixture was brought to the boil (constant stirring), then added sugar and salt, and boiled for 1 

minute. The porridge was then transferred to an insulated container and transported (approx. 

10 minutes) to a room set aside for its consumption, adjacent to the MRI facility. 

2.2 Imaging of gastric contents 

The gastric contents of the volunteers was determined using a conventional 3T magnetic 

resonance imaging (MRI) scanner (GE Discovery MR750w). Imaging used a FIESTA (Fast 

Imaging Employing Steady-state Acquisition) protocol developed to scan the stomach in a 

breath-hold of the order of 15-20s depending on the fullness of the stomach (TR/TE 

3.73/1.19ms, Field of view 450 mm, matrix 512 x 512, slice thickness 5 mm). This yields 

contiguous 5mm axial slices through the stomach enabling calculation of total stomach 

volume. Both transverse and coronal images were acquired in order to ensure that the gastric 



volume could be accurately defined. Total volumes of gastric contents (excluding gas) and the 

nature of layers formed as a result of sedimentation were determined at each time point using 

freehand tracings of the region of interest around the stomach contents for each 5mm thick 

slice and from this the total stomach volume was calculated using Image-Pro Plus v7.1 

software (Media Cybernetics inc, San Diego, USA) (20). This involved assessment of the 

position of the pylorus. Each set of scans took about 5 minutes and between scans the 

volunteers remained seated upright close to the scanner. From the variation of the gastric 

volume with time we deduced an apparent emptying rate, which provides the estimated rate 

at which the food emptied from the stomach, due to the inhomogeneous distribution of the 

food material inside the stomach and because of the simultaneous addition of gastric 

secretion.  

2.3 Visual analogue scales 

We assessed volunteer satiety with a self-reported visual analogue scale technique (35). 

Before the meal and at specific time intervals post-meal as given in Table 2, the volunteers 

completed a five question satiety questionnaire with a visual-analogue scale (VAS) for each 

of the following questions: (1) “How hungry are you?” (2) “How full do you feel?” (3) “How 

satisfied do you feel?” (4) “How big is your desire to eat?” (5) “How thirsty are you?”. The 

analogue scores for each question were then converted to numeric scores based on the 

following: 1. 1=“not at all hungry” 10=“very hungry”; 2. 1=“not full at all”, 10=“very full”; 3. 1=“not 

satisfied at all”, 10=“very satisfied”; 4. 1=“no desire to eat at all”, 10=“very big desire to eat”; 

5. 1=“not thirsty at all”, 10=“very thirsty”. The individual participant data were normalized by 

subtracting the mean value and dividing by the standard deviation of each time course. The 

data are presented as the difference from baseline and show the mean +/- the standard error 

in the mean.  

 



2.4 Determination of glucose, insulin and GI hormones 

At the start of each study session volunteers were fitted with a cannula so that blood could be 

drawn periodically. At each required time point 4ml of blood was drawn and stored on ice for 

less than two hours before being centrifuged. Blood was collected into tubes (Vacutainer K2 

EDTA, Becton Dickenson, USA) containing 170.9 µl (2000 KIU) of aprotinin (Sigma-Aldrich, 

UK) and after centrifugation for 10 minutes at 1500 x g and 4 °C the plasma was removed and 

stored in pre-labelled tubes at -80 °C. The plasma analysis was performed by the Core 

Biochemical Assay Laboratory of Cambridge University Hospitals. The plasma was analyzed 

for insulin, GIP (glucose-dependent insulinotropic peptide) and GLP-1 (Glucagon-like peptide 

1) by Diasorin Liaison XL auto analyzer. The insulin concentrations were determined using a 

one-step chemiluminescence immunoassay also from Diasorin (Diasorin S.p.A, 13040 

Saluggia (VC), Italy). The GLP-1 and GIP concentrations were determined using 

electrochemical luminescence immunoassay kits from MesoScale Discovery (Gaithersburg, 

MD, USA). The plasma samples were also analyzed for glucose using a Randox Datona+ 

(Randox Laboratories Ltd, Crumlin, UK) and a colorimetric GL 8318 glucose kit. 

 

2.5 Determination of viscosity and available ȕ-glucan during in vitro digestion 

A simulated digestion model (28) was used to digest porridge samples (2 g) in duplicates. 

Pepsin (P7000 from porcine gastric mucosa (EC 3.4.23.1), Sigma-Aldrich, St. Louis, US), 

pancreatin (P1750 from porcine pancreas, Sigma-Aldrich, St. Louis, US) and bile salts ( B8381 

bile from bovine and ovine, Sigma-Aldrich, St. Louis, US) were used at concentrations of 2000 

U/mL, 100 U/mL (based on trypsin activity) and 10mM, respectively, in the final digestion 

mixtures. The digestion was performed in 50mL centrifuge tubes placed horizontally in a 

shaking incubator (Innova 40, Incubator Shaker Series, New Brunswick Scientific, Edison, 

New Jersey, US) at 175 rpm and 37˚C. Incubation in the intestinal phase was 2h, after which 

the samples were centrifuged at 4000 rpm for 10 min (Heraeus Multifuge 4 KR). An aliquot of 

the supernatant was boiled for 5 min, diluted, filtered through a 0.8µm syringe filter and 



injected into a HPSEC system with calcofluor detection to determine ȕ-glucan Mw as 

previously described (30). The ȕ-glucan concentrations were calculated from the area under 

the chromatographic peak using ȕ-glucan standards of known concentration as reference. The 

viscosity of the supernatants was measured at constant shear (10s-1) using a Physica MCR 

301 rheometer (Anton Paar, Stuttgart, Germany) fitted with a double gap geometry (DG26.7). 

 

2.6 Methodology 

The crossover study was designed to assess differences in gastric emptying, satiety indicators 

and levels of glucose, insulin and GI hormones glucose-dependent insulinotropic peptide 

(GIP) and glucogon like peptide 1 (GLP-1). The study included only male volunteers aged 

between 37 and 53 and with a BMI between 23 and 30. The mean age of the cohort was 46+/- 

6 and the mean BMI was 26.4 +/- 1.7. The clinical details of the participants are given in Table 

2. All 8 volunteers recruited to the study were apparently healthy and provided written informed 

consent before taking part in the study, which was approved by an NHS research ethics 

committee (Approval 15/SW/0165). Each volunteer attended the study center on two 

occasions, at least 7 days apart consuming a different meal on each occasion. The order in 

which the meals were consumed was randomly allocated. All volunteers were able to consume 

all of the test meals within 5 minutes. 

On each study day volunteers were asked to fast overnight, with the last consumption of a 

meal prior to 22:00 the previous day to the study. They were allowed to drink as much water 

as they needed but only until 07:00. After this time no further consumption was allowed. The 

experimental protocol was started between 08:30 and 09:00, which corresponds to the first 

time point in Table 3. After initial formalities each volunteer had a cannula inserted into an arm 

ready for blood drawing. They then underwent the first MRI scan, a 4 ml sample of blood was 

drawn and they were asked to complete a VAS questionnaire (baseline measurements). The 

volunteer consumed the meal, allocated at random. Immediately after the meal has been 

consumed the second MRI scan was performed with subsequent scans being undertaken as 



laid out in Table 3. The volunteers were asked to repeatedly complete a VAS satiety 

questionnaire and have a 4 ml sample of blood drawn and the timing for these are also given 

in Table 3. 

 

2.7 Statistics 

The study was powered based on the primary outcome, glycaemic response, which in healthy 

participants is most significantly shown with insulin.  Using the data from a previous study (32) 

as a guide, in order to see a significant difference (P<0.05) of at least 18 pmol/L (106 pg/mL) 

insulin between treatments, the current study requires 8 volunteers (power=95%). The data 

are multivariate by nature, which calls the need to be analysed as such. For overview and 

validation multivariate data analysis using Partial Least Squares Discriminant Analysis (PLS-

DA) (2) were performed with product type (flakes vs flour) as response variable. The features 

were standardized to unit variance. The PLS-DA model was performed by Unscramble 

(version 10.3, Camo Software) and plotted in the setup using the data programming language 

R (http://www.r-project.org/ Version 3.2.2). Validation of the model is given as percentage of 

correctly classified response (Flour, Flakes) in a cross validation test where one sample at a 

time is left out from the calibration and used for the validation. The results are presented first 

for one feature at the time using error bars as guidelines. 

 

3. Results 

The primary aim of the study was to determine whether oat porridge produced from flaked 

oats gave a different glycemic response and remained in the stomach for longer than porridge 

made from oat flour. Participants were fed 264 g of porridge along with 175 mL of water making 

a total of ~440mL, which was consumed in less than ten minutes. Analysis of the MRI images 

yielded the volume of gastric chyme for all participants as a function of time. This data, shown 

in Figure 1, indicates an initial gastric volume slightly higher than the meal volume after 5 



minutes, which is most likely due to the fasting secretion present before the meal was 

consumed. The data demonstrates very little difference between the two meals. However, 

towards the end of the gastric cycle it is clear that more of the flakes remained in the stomach.  

 

Figure 1: Difference in volume of gastric chime above baseline after consumption of porridge 

made from either oat flakes (continuous line) or oat flour (dashed line). The error bars 

represent the standard error in the mean, n=8. 

Using a simple Elashoff equation (8) to fit the gastric chyme volume data gives emptying half 

time (t1/2) values of 74 +/- 17 minutes and 84 +/- 11 minutes for the flour and flake porridge, 

respectively. A simple shape factor of 1 was used fit the data assuming no lag phase. This 

then gives mean emptying rates of 3.3 +/- 0.7 and 2.7 +/- 0.5 mL/minute respectively for the 

flour and flake porridge. Thus, given that the final caloric density of what was consumed in 

both cases, i.e. the porridge and water was 0.54 kcal/mL, the caloric emptying rate was 1.8 

and 1.5 kcal/minute for the flour and flake porridge respectively.  



The data for the oat flakes suggests an initial faster rate of emptying followed by a slower rate. 

This is also confirmed by images of the gastric content shown in Figure 2. After 5 minutes, 

clear layering (phase separation) was seen in the flake porridge but the layering was no longer 

visible twenty minutes later indicating that the liquid layer on the top of the stomach contents 

had been emptied. The mean volume of this clear layer was 107 +/- 24 mL, which closely 

corresponds to the 115 +/- 30 mL emptied between 5 and 25 minutes after consumption of 

the meal. This strongly suggests that the initial emptying of the flaked porridge meal was 

almost entirely the liquid part and not the oat flakes themselves. 

  

Figure 2 Axial FIESTA MRI images of the stomach (outlined) taken 5 mins (left) and 25 mins 

(right) post consumption. The left image shows a layer above the oat flake porridge that is not 

apparent after 25 mins. 

In addition to measuring the volume of gastric contents, the participants were asked to 

complete a VAS questionnaire associated with appetite. In particular, the sensation of fullness 

is normally closely associated with gastric volume and also inversely associated with hunger. 

The data for hunger, fullness, satisfaction, desire to eat and thirst are shown in Figure 3a-e. 

In this case the fullness, hunger and satisfaction ratings were similar for both meals at all time 

points, whereas the flakes showed higher scores for desire to eat from 50 minutes after intake. 

The ratings for thirst showed marked differences after 90 minutes with the flake giving more 

pronounced feelings of thirst. Interestingly all of the data except thirst showed a crossover at 

circa 100 minutes. 



 

 

Figure 3. Normalised visual analogue scale questionnaire results shown as the mean value 

for hunger (A), fullness (B), satisfaction (C), desire to eat (D) and thirst (E) after consumption 

of either oat flakes (continuous line) or oat flour (dashed line) porridge. The error bars shown 

represent the standard error in the mean, n=8.  

Both gastric emptying and appetite related sensations are linked to nutrient absorption and 

gastrointestinal hormone secretion. The results of the analysis of the blood samples taken are 

shown in Figures 4 and 5. The data show that there was a small difference in peripheral 

glucose with the flakes giving a smaller peak at about 35 minutes post meal consumption. The 



incremental area under the curve (iAUC) for the glucose as calculated by the method of 

Brouns et al. (6) is 65.9 +/- 21.4 mM.minutes/L for the flour porridge and 46.0 +/- 37.7 

mM.minutes/L for the flakes. The difference in insulin response was larger with the peak at 35 

minutes markedly higher for the flour than the flakes. Although the small apparent drop of the 

plasma glucose below the fasted (initial) value in latter stage of the study day was within the 

random error of the experiment, such a drop has also been seen in similar studies (5, 16). 

 

Figure 4. The average concentrations of glucose (A) and insulin (B) found in plasma after 

consumption of porridge made from either oat flakes (continuous line) or oat flour (dashed 

line). The error bars represent the standard error in the mean, n=8.  

The data for the GIP and GLP-1 responses are shown in Figure 5. As both of these hormones 

are incretins, they both follow similar patterns. The patterns for the change in plasma 

concentrations of GIP and insulin are very similar after consumption of both meals, with a peak 

at around 30 minutes. In the case of GIP the difference between the meals is very marked, in 

particular at 35 minutes.  The greater response was generated by the flour at all post 

consumption time points up to 85 minutes with the flakes giving the greater response 

thereafter. The GLP-1 concentration showed a difference between the two meals at 20 

minutes, with the flour giving the larger response at that time. Interestingly, the crossover in 

all the plasma data was at about 90-100 minutes, which is slightly after a crossover in the 

ϰ͘Ϭ

ϰ͘ϱ

ϱ͘Ϭ

ϱ͘ϱ

ϲ͘Ϭ

ϲ͘ϱ

ϳ͘Ϭ

ϳ͘ϱ

ͲϱϬ Ϭ ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ

Gů
ƵĐ

ŽƐ
Ğ 

;ŵ
M

Ϳ

TŝŵĞ ;MŝŶƵƚĞƐͿ

A

Ϭ͘Ϭ

ϱϬ͘Ϭ

ϭϬϬ͘Ϭ

ϭϱϬ͘Ϭ

ϮϬϬ͘Ϭ

ϮϱϬ͘Ϭ

ϯϬϬ͘Ϭ

ϯϱϬ͘Ϭ

ͲϱϬ Ϭ ϱϬ ϭϬϬ ϭϱϬ ϮϬϬ

IŶ
ƐƵ

ůŝŶ
 ;Ɖ

Őͬ
ŵ

LͿ

TŝŵĞ ;MŝŶƵƚĞƐͿ

B



gastric volume curves and may indicate the time at which most of the flour porridge had been 

digested but when there was still glucose from the flake porridge being absorbed. 

   

Figure 5. The average concentrations of GIP (A) and GLP-1 (B) found in plasma after 

consumption of porridge made from either oat flakes (continuous line) or oat flour (dashed 

line). The error bars represent the standard error in the mean, n=8.  

In order to investigate the role of ȕ-glucan in the late period of digestion, when the crossover 

was observed in blood parameters and VAS measures, simulated intestinal viscosity and ȕ-

glucan release were obtained after in vitro digestion. The two porridge samples did not differ 

in ȕ-glucan Mw with values of 1097 +/- 14 and 1107 +/- 17 for the flour and flakes respectively. 

However, more ȕ-glucan was solubilized in the flour porridge (37.5 +/-1.8%) compared to the 

flake porridge (28.5 +/- 1.5%) and the viscosity of the extract was also slightly higher for the 

flour porridge (1.38 +/- 0.02 mPas) compared to the flake porridge (1.17 +/- 0.01 mPas). 

An overview and validation of the effects produced by the digestion of the two porridge meals 

is provided by PLS-DA discriminant analysis performed at an early time point, i.e. 35 min after 

consumption of the porridge (Figure 6 a and b), and a later time point, i.e. 180 min after 

consumption (Figure 6 c and d).  

In the score plots of the samples, displayed in Figure 6a (35 min) and Figure 6c (180 min), the 

flour is located towards the upper right corner and the flakes are located towards the lower left 

corner. The loading plot at 35 min (Figure 6b) reflects the higher levels of glucose, insulin, and 
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GIP, as well as higher ratings of hunger observed for the flour porridge at this time point. All 

these features are located towards the right hand side in the loading plot, and so is the 

response variable “flour”. At the later time point (180 min) (Fig 6 c and d) this pattern is 

changed, with the flake porridge associated with the highest ratings of hunger and desire to 

eat, and the flour porridge with higher fullness and satisfaction. The plasma levels of glucose, 

insulin and GIP, as well as the gastric volume, were highest for the flake porridge at this time 

point. 

 

Figure 6. Multivariate data analysis (PLS-DA) of the observed data on glucose, insulin, GIP, 

gastric volume and satiety sensations, with porridge type (flakes and flour) as two response 

classes. Fig. 6a and b show the results 35 min after intake of porridge, and Fig. 6c and d show 

the results 180 min after intake. Fig. 6a and c are score plots of the samples, and Fig. 6b and 

d show the corresponding loadings of the input variables and the responses, n=8.   



 

Discussion 

Once consumed, food passes into the stomach, where it stays until it is emptied into the 

duodenum. In the time that it resides in the stomach a number of changes can take place 

including digestion by gastric and oral enzymes depending on local pH and phase separation 

(25). In this case the oat flake porridge showed significant signs of sedimentation of the flakes 

immediately post consumption (figure 2a). The absence of the liquid phase above the flakes 

in the image taken 20 minutes later shows that the flakes remained sufficiently intact to be 

prevented from passing through the pylorus into the duodenum. This confirms that a good 

proportion of the original flake porridge meal remained in the stomach longer than flour 

porridge meal. However, does this mean that the starch in that porridge remained associated 

with the flakes and thus was not emptied into the duodenum? The lower peak in plasma 

glucose, insulin and GIP certainly suggest that this was the case. 

The most significant difference in the plasma components that were measured was seen in 

glucose-dependant insulinotropic peptide (GIP). The secretion of GIP by K-cells is driven by 

the rate of nutrient absorption in the proximal small intestine, especially glucose or fat (1). The 

primary role of GIP is in the pancreas where it binds to its specific receptor (GIPR) on ȕ-cells 

and enhances glucose dependent insulin secretion. Thus, it is no surprise that the GIP 

response is mirrored by the insulin response to both meals but to a lesser extent. In a recent 

study, Trahair et al. sought to determine the effect of two different rates of intraduodenal 

glucose infusions (1 or 3 kcal/min) on glycemic, insulinemic and incretin hormone responses 

in lean and obese subjects, and compare the effects of oral and intraduodenal glucose in 

obese subjects (37). This was done to mimic different rates of gastric emptying. 

Unsurprisingly, the faster delivery of glucose in their study gave higher responses in glucose, 

insulin and GIP. In the healthy control group, the pattern was very similar to that seen in this 

study with the GIP response the largest followed by the insulin and then the plasma glucose. 

This was not the case in the obese group, where the GIP response was less significant than 



either the insulin or glucose responses. The authors concluded that the rate of duodenal 

delivery of glucose is a major determinant of glycaemia in obese subjects and that “strategies 

that slow gastric emptying may prevent progression to type 2 diabetes in obesity warrants 

exploration.” In the work presented here we have started that exploration. 

The particle size (flour vs flakes) in oat porridge significantly influenced the glycemic response. 

The peaks in blood glucose, insulin and GIP observed 30-40 min after intake were significantly 

higher for the flour porridge compared to the flake porridge. The MRI analyses indicate that 

this was not due to a more rapid gastric emptying after intake of flour porridge. However the 

composition of what was emptied from the stomach could have been very different because 

of the gastric sieving effect. The higher glycemic response is therefore more likely reflecting 

increased starch hydrolysis in the intestine due to more easily available starch in the flour than 

the flakes. 

 

In an attempt to unify all of the data including the subjective appetite scores, a multivariate 

analysis was undertaken. Results from the PLS-DA also reflect the differences in glycemic 

response. Over the time course, the plasma levels of glucose, insulin and GIP declined for 

both porridges, resulting in a shift after approximately 2 hours when the flour porridge showed 

slightly lower levels of glucose, insulin and GIP than the flake porridge. Similarly, the satiety 

data changed with time. At 35 min after ingestion the flake porridge was associated with lower 

hunger, whereas at 180 min the flake porridge got the highest ratings of hunger and desire to 

eat. Although the satiety data correlated well with the levels of plasma glucose, insulin and 

GIP at both time points (low levels were associated with higher fullness and satisfaction), there 

may not be any cause and effect relationship. It is unlikely that the glycemic or insulin response 

can explain the shift in satiety taking place from 35 to 180 min after ingestion. Neither were 

there any strong correlations between satiety ratings and gastric volume. Hence, there must 

be other explanations for the differences in satiety.  

 



At the early time point (35 min) the flake porridge was considered as more satiating than the 

flour porridge. MRI analysis indicated that the liquid layer on the top of the stomach content is 

rapidly emptied during this period. The flake porridge also gave a more pronounced feeling of 

thirst, which may indicate that the flake porridge was more viscous in the stomach than the 

flour porridge (26, 27). Viscosity has been shown to have an effect on satiety and fullness in 

many studies, but may not affect fullness through delayed gastric emptying (10, 18). Hence, 

the increased perceived fullness observed after ingestion of flake porridge in the present study 

may be due to increased viscosity in the stomach, not generated by the starch and ȕ-glucan 

but rather the persistent structure of the flakes. At later time points, the flour porridge was 

associated with higher fullness and satisfaction. This may be due to the higher release of ȕ-

glucan from the flour porridge (37.5 %) compared to the flake porridge (28.5 %) as measured 

after in vitro digestion. Hence, the smaller particle size in flour compared with flakes makes 

the ȕ-glucan more available and resulted in a higher viscosity in the intestinal phase for the 

porridge made from flour compared with the porridge made with flakes. Increased viscosity 

may have an effect on nutrient digestion and uptake, and, hence, the stimulation of release of 

satiety hormones. However, it should be noted that the viscosity difference between the two 

porridge samples (p = 0.053) was very small (0.21mPas). It is therefore unlikely that the 

viscosity difference alone can explain the different outcomes for the two porridges at later time 

points of digestion and other mechanisms may be involved. It is possible that the higher 

amount of solubilized ȕ-glucan in the flour porridge still plays a role, for example by decreasing 

the permeability of the intestinal mucus layer (19). Previous studies have shown that 

increasing amounts of ȕ-glucan lower postprandial blood glucose and insulin levels (21). In 

the present study, a potential inhibiting effect of ȕ-glucan on the uptake of glucose seemed 

minor compared to the effect of more available starch in the duodenum.   

 

In summary, the results suggest that there are two main phenomenon taking place. Firstly, 

decreased gastric emptying of flakes in comparison to the increased availability of starch in 

the flour porridge resulted in a more pronounced glycemic response from the flour. Secondly, 



increased availability of ȕ-glucan caused increased perceived satiety in the flour after 2 hours. 

Neither satiety nor glycemic response appeared to be related to gastric emptying rate.  
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Figure Captions 

Figure 1: Total volume of gastric content (excluding gas) after consumption of porridge made 

from either oat flakes (continuous line) or oat flour (dashed line). The error bars represent 

the standard error in the mean, n=8. 

 

Figure 2. Axial FIESTA MRI images of the stomach (outlined) taken 5 mins (left) and 25 mins 

(right) post consumption. The left image shows a layer above the oat flake porridge that is 

not apparent after 25 mins. 

 

Figure 3. Normalized visual analogue scale questionnaire results shown as the mean value 

for hunger (A), fullness (B), satisfaction (C), desire to eat (D) and thirst (E) after consumption 

of either oat flakes (continuous line) or oat flour (dashed line) porridge. The error bars shown 

represent the standard error in the mean, n=8. 

 

Figure 4. The average concentrations of glucose (A) and insulin (B) found in plasma after 

consumption of porridge made from either oat flakes (continuous line) or oat flour (dashed 

line). The error bars represent the standard error in the mean, n=8.  

 

Figure 5. The average concentrations of GIP (A) and GLP-1 (B) found in plasma after 

consumption of porridge made from either oat flakes (continuous line) or oat flour (dashed 

line). The error bars represent the standard error in the mean, n=8.  

 

Figure 6. Multivariate data analysis (PLS-DA) of the observed data on glucose, insulin, GIP, 

gastric volume and satiety sensations, with porridge type (flakes and flour) as two response 



classes. Fig. 6a and b show the results 35 min after intake of porridge, and Fig. 6c and d 

show the results 180 min after intake. Fig. 6a and c are score plots of the samples, and Fig. 

6b and d show the corresponding loadings of the input variables and the responses, n=8. 



Table 1 Composition and nutritional information of the two porridge meals 

Ingredient Oat flakes Oat flour 

Flakes/ flour (g) 35.2 35.2 

Skimmed milk (g) 110 110 

Water (g) 110 110 

Margarine (g) 6.6 6.6 

Sugar (g) 1.98 1.98 

Salt (g) 0.11 0.11 

Total amount (g) 264 264 

Kcal for 264 g portion 237.6 237.6 

Nutrition g / 100g g / 264g g / 100g g / 264g 

Fat  2.94  7.76 2.94  7.76 

Carbohydrate  11.7 30.9 11.7 30.9 

Fiber  1.66 4.38 1.66 4.38 

Beta-glucan 0.54 1.43 0.54 1.43 

Protein  3.36 8.87 3.36 8.87 

*Salt  0.80 2.11 0.80 2.11 

 

Table 2. Participant clinical characteristics 

Participant 
ID 

Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

BMI 
(Kg/m2) 

Blood 
pressure 
(mmHg) 

Resting 
heart rate 
(BPM) 

OM01 48 176.6 81.2 26 138/82 57 
OM02 48 179.6 89.1 27.6 120/84 61 
OM03 53 188.9 94.9 26.6 124/79 53 
OM04 48 178.8 75.7 23.7 129/84 70 
OM06 38 178.7 94.5 29.6 129/78 63 
OM07 46 173.6 78.7 26.1 137/82 60 
OM08 53 188.9 92.3 25.9 123/73 56 
OM09 37 193.8 96.4 25.7 137/88 61 

 

Table 3 Timing of the study protocol. All times are given in minutes after completion of meal 
consumption with the exception of the first row, which indicates the time prior to meal 
consumption of the porridge. 



TŝŵĞ ƉŽŝŶƚ MRI ƐĐĂŶ BůŽŽĚ ƐĂŵƉůŝŶŐ VAS ƋƵĞƐƚŝŽŶŶĂŝƌĞ 

ϭ Ͳϭϱ ͲϭϬ Ͳϱ 

Ϯ ϱ ϭϬ ϭϱ 

ϯ Ϯϱ ϮϬ ϯϬ 

ϰ ϰϱ ϯϱ ϱϬ 

ϱ ϲϱ ϲϬ ϳϬ 

ϲ ϵϬ ϴϱ ϭϬϬ 

ϳ ϭϭϱ ϭϭϬ ϭϯϬ 

ϴ ϭϰϱ ϭϰϬ ϭϲϬ 

ϵ ϭϴϬ ϭϳϬ ϭϵϬ 

 

 


