409 research outputs found

    Factors influencing breastfeeding practices in Edo state, Nigeria

    Get PDF
    The superiority of breast milk compared to other types of milk for the nourishment of the human infant offering better health benefits, has been established by various research publications. Early childhood is characterized by rapid growth, maturation of tissues and remodeling of organs. Breastfeeding is the optimal method for feeding infants. All the nutritional needs for most of these children are provided by breast milk in the right amounts and duration. In Nigeria however, young infants may not benefitfrom such a practice as a result of poor early initiation and the use of other liquids undermining breast milk. The purpose of this study was to determine factors influencing breastfeeding practices in Edo State, Nigeria. A questionnaire and group interviewed were the instruments used. Data was collected from 600 randomly selected mothers of children aged 4–24 months, who visited four antenatal and children clinics. The data obtained were analysed using percentiles, means and standard deviations.Although the findings indicated that 82 per cent of the mothers practiced breastfeeding, 66 per cent supplemented with corn gruel and glucose water, and 14 per cent used herbal brew. Only 20 per cent practiced exclusive breastfeeding. Of the possible variables affecting breastfeeding practices, proximity to baby with a mean score of 4.63 (SD ± 0.66) out of 5.00 was the most influential, and the least, family background, had a mean score of 2.32 (SD ± 0.92). The findings of the study have implications for health education programmes and breastfeeding practices. Efforts must be intensified to educate prospective mothers on the need and benefits of breastfeeding, and that the UNICEF-WHO Baby Friendly Hospital Initiative must go beyond the designated University Teaching Hospitals to other public and privately owned hospitals. The provision of crèches at the work place or market place will reduce the distance between babies and their mothers and subsequently increase the levels of breastfeeding

    Global analysis of data on the spin-orbit coupled A1Σu+A^{1}\Sigma_{u}^{+} and b3Πub^{3}\Pi_{u} states of Cs2

    Full text link
    We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed A1Σu+A^{1}\Sigma_{u}^{+} and b3Πub^{3}\Pi_{u} states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aim\'{e} Cotton primarily to study the X1Σg+X ^{1}\Sigma_{g}^{+} state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the b3Π0u±b^{3}\Pi_{0u}^{\pm} states as well as additional high resolution data. From Innsbruck University, we have precision data obtained with cold Cs2_{2} molecules. Recent data from Temple University was obtained using the optical-optical double resonance polarization spectroscopy technique, and finally, a group at the University of Latvia has added additional LIF FTS data. In the Hamiltonian matrix, we have used analytic potentials (the Expanded Morse Oscillator form) with both finite-difference (FD) coupled-channels and discrete variable representation (DVR) calculations of the term values. Fitted diagonal and off-diagonal spin-orbit functions are obtained and compared with {\it ab initio} results from Temple and Moscow State universities

    Probiotic Pre-treatment Reduces Gliclazide Permeation (ex vivo) in Healthy Rats but Increases It in Diabetic Rats to the Level Seen in Untreated Healthy Rats

    Get PDF
    Aim. To investigate the influence of probiotic pre-treatment on the permeation of the antidiabetic drug gliclazide in healthy and diabetic rats. Methods. Wistar rats (age 2-3 months, weight 350 ± 50 g) were randomly allocated into one of 4 groups (N = 16 each group): healthy control, healthy probiotic, diabetic control, and diabetic probiotic. Probiotics (75 mg/kg, equal quantities of Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus rhamnosus) were administered twice a day for three days to the appropriate groups after diabetes had been induced with alloxan i.v. 30 mg/kg. Rats were sacrificed, ileal tissues mounted in Ussing chambers and gliclazide (200 µg/mL) was administered for the measurement of the mucosal to serosal absorption Jss(MtoS) and serosal to mucosal secretion Jss(StoM) of gliclazide. Results. Treatment of healthy rats with probiotics reduced Jss(MtoS) of gliclazide from 1.2 ± 0.3 to 0.3 ± 0.1 µg/min/cm2 (P < 0.01) and increased Jss(StoM) from 0.6 ± 0.1 to 1.4 ± 0.3 (P < 0.01) resulting in net secretion while, in diabetic tissues, treatment with probiotics increased both Jss(MtoS) and Jss(StoM) fluxes of gliclazide to the comparable levels of healthy tissues resulting in net absorption. Discussion. In healthy rats, the reduction in Jss (MtoS) after probiotics administration could be explained by the production of bacterial metabolites that upregulate the mucosal efflux drug transporters Mrp2 that control gliclazide transport. In diabetic rats, the restored fluxes of gliclazide after probiotic treatment, suggests the normalization of the functionality of the drug transporters resulting in a net absorption. Conclusion. Probiotics may alter gliclazide transport across rat ileal tissue studied ex vivo. © 2008, Archives of Drug Information

    Macro-scale transport of the excitation energy along a metal nanotrack: exciton-plasmon energy transfer mechanism

    Get PDF
    Presently we report (i) excited state (exciton) propagation in a metal nanotrack over macroscopic distances, along with (ii) energy transfer from the nanotrack to adsorbed dye molecules. We measured the rates of both of these processes. We concluded that the effective speed of exciton propagation along the nanotrack is about 8 × 107 cm/s, much lower than the surface plasmon propagation speed of 1.4 × 1010 cm/s. We report that the transmitted energy yield depends on the nanotrack length, with the energy emitted from the surface much lower than the transmitted energy, i.e. the excited nanotrack mainly emits in its end zone. Our model thus assumes that the limiting step in the exciton propagation is the energy transfer between the originally prepared excitons and surface plasmons, with the rate constant of about 5.7 × 107 s-1. We also conclude that the energy transfer between the nanotrack and the adsorbed dye is limited by the excited-state lifetime in the nanotrack. Indeed, the measured characteristic buildup time of the dye emission is much longer than the characteristic energy transfer time to the dye of 81 ns, and thus must be determined by the excited state lifetime in the nanotrack. Indeed, the latter is very close to the characteristic buildup time of the dye emission. The data obtained are novel and very promising for a broad range of future applications.PR Institute of Functionalized Nanomaterials NASA EPSCoR grant (NASA Cooperative Agreement) NNX15AK43A National Centre for Research Resources NIH-NCRR-G12-RR03035 NIMHD-G12-MD007583info:eu-repo/semantics/publishedVersio

    Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome

    Get PDF
    Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6a-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives

    The Improvement of Hypertension by Probiotics: Effects on Cholesterol, Diabetes, Renin, and Phytoestrogens

    Get PDF
    Probiotics are live organisms that are primarily used to improve gastrointestinal disorders such as diarrhea, irritable bowel syndrome, constipation, lactose intolerance, and to inhibit the excessive proliferation of pathogenic intestinal bacteria. However, recent studies have suggested that probiotics could have beneficial effects beyond gastrointestinal health, as they were found to improve certain metabolic disorders such as hypertension. Hypertension is caused by various factors and the predominant causes include an increase in cholesterol levels, incidence of diabetes, inconsistent modulation of renin and imbalanced sexual hormones. This review discusses the antihypertensive roles of probiotics via the improvement and/or treatment of lipid profiles, modulation of insulin resistance and sensitivity, the modulation of renin levels and also the conversion of bioactive phytoestrogens as an alternative replacement of sexual hormones such as estrogen and progesterone

    Pseudomonas aeruginosa Pili and Flagella Mediate Distinct Binding and Signaling Events at the Apical and Basolateral Surface of Airway Epithelium

    Get PDF
    Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR), adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung epithelium that may be potentially useful in the development of novel treatments for P. aeruginosa infections

    The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, tuberculosis (TB) was responsible for 2.5% of global mortality (among men 3.1%; among women 1.8%) and 2.2% of global burden of disease (men 2.7%; women 1.7%). The present work portrays accumulated evidence on the association between alcohol consumption and TB with the aim to clarify the nature of the relationship.</p> <p>Methods</p> <p>A systematic review of existing scientific data on the association between alcohol consumption and TB, and on studies relevant for clarification of causality was undertaken.</p> <p>Results</p> <p>There is a strong association between heavy alcohol use/alcohol use disorders (AUD) and TB. A meta-analysis on the risk of TB for these factors yielded a pooled relative risk of 2.94 (95% CI: 1.89-4.59). Numerous studies show pathogenic impact of alcohol on the immune system causing susceptibility to TB among heavy drinkers. In addition, there are potential social pathways linking AUD and TB. Heavy alcohol use strongly influences both the incidence and the outcome of the disease and was found to be linked to altered pharmacokinetics of medicines used in treatment of TB, social marginalization and drift, higher rate of re-infection, higher rate of treatment defaults and development of drug-resistant forms of TB. Based on the available data, about 10% of the TB cases globally were estimated to be attributable to alcohol.</p> <p>Conclusion</p> <p>The epidemiological and other evidence presented indicates that heavy alcohol use/AUD constitute a risk factor for incidence and re-infection of TB. Consequences for prevention and clinical interventions are discussed.</p

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
    corecore