83 research outputs found

    Affective regulation of cognitive-control adjustments in remitted depressive patients after acute tryptophan depletion

    Get PDF
    Negative affect in healthy populations regulates the appraisal of demanding situations, which tunes subsequent effort mobilization and adjustments in cognitive control. In the present study, we hypothesized that dysphoria in depressed individuals similarly modulates this adaptation, possibly through a neural mechanism involving serotonergic regulation. We tested the effect of dysphoria induced by acute tryptophan depletion (ATD) in remitted depressed patients on conflict adaptation in a Simon task. ATD temporarily lowers the availability of the serotonin precursor L-Tryptophan and is known to increase depressive symptoms in approximately half of remitted depressed participants. We found that depressive symptoms induced by ATD were associated with increased conflict adaptation. Our finding extends recent observations implying an important role of affect in regulating conflict-driven cognitive control

    Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–the Mobilise-D study protocol

    Get PDF
    Background The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. Methods/design The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson’s Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. Discussion The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility

    Fusion reaction 48Ca+249Bk leading to formation of the element Ts (Z=117)

    Get PDF
    The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confirm the previous findings at the Dubna Gas-Filled Recoil Separator on the decay chains originating from the nuclei assigned to Ts

    Exploring the role of individual level and firm level dynamic capabilities in SMEs’ internationalization

    Get PDF
    This paper presents a multi-level model that examines the impact of dynamic capabilities on the internationalization of SMEs while taking into account the interactions among them. The purpose of the research is to understand the applicability of dynamic capabilities at the individual and the firm level to the SME internationalization process in developing country context and to assess to what extent a firm’s asset position and individual level dynamic capabilities influence the generation of firm level dynamic capabilities in SMEs. First, the dynamic capabilities theory was theoretically linked to the internationalization phenomenon. The relationships among firm-level dynamic capabilities, individual-level dynamic capabilities (owner specific dynamic capabilities), and internationalization were identified. The research framework and hypotheses were developed and empirically tested with 197 SMEs. The findings established that owner-specific dynamic capabilities have a positive influence on both firm dynamic capabilities and internationalization, and firm dynamic capabilities positively influence internationalization. It was also found that the market assets position measured as perceptual environmental dynamism positively influenced firm dynamic capabilities but structural and reputational asset positions of SMEs did not influence generation of firm dynamic capabilities. Moreover, firm dynamic capabilities had a mediation effect in the relationship between owner-specific dynamic capabilities and internationalization. Theoretically, this confirms the relevance of dynamic capability theory to internationalization and the possibility of integrating existing internationalization theories. Entrepreneurs, SME managers, and policy-makers could gain valuable insights on how entrepreneur and firm capabilities lead to better international prospects from this outcome

    <it>In silico </it>toxicology models and databases as FDA Critical Path Initiative toolkits

    No full text
    <p>Abstract</p> <p><it>In silico </it>toxicology methods are practical, evidence-based and high throughput, with varying accuracy. <it>In silico </it>approaches are of keen interest, not only to scientists in the private sector and to academic researchers worldwide, but also to the public. They are being increasingly evaluated and applied by regulators. Although there are foreseeable beneficial aspects -- including maximising use of prior test data and the potential for minimising animal use for future toxicity testing -- the primary use of <it>in silico </it>toxicology methods in the pharmaceutical sciences are as decision support information. It is possible for <it>in silico </it>toxicology methods to complement and strengthen the evidence for certain regulatory review processes, and to enhance risk management by supporting a more informed decision regarding priority setting for additional toxicological testing in research and product development. There are also several challenges with these continually evolving methods which clearly must be considered. This mini-review describes <it>in silico </it>methods that have been researched as Critical Path Initiative toolkits for predicting toxicities early in drug development based on prior knowledge derived from preclinical and clinical data at the US Food and Drug Administration, Center for Drug Evaluation and Research.</p
    corecore