39 research outputs found

    Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate

    Get PDF
    © 2016 The Authors Increasing soil organic matter (OM) is promoted as a strategy for improving the resilience of coarse-textured cropping soils in semi-arid climates. While increasing soil OM can benefit crop productivity, it can also enhance nitrous oxide (N2O) emissions in temperate climates. Our objective was to investigate if increasing soil OM affected soil greenhouse gas (GHG) fluxes and grain production in a semi-arid region in south-western Australia. We firstly measured N2O and methane (CH4) fluxes from a free-draining sandy soil with contrasting soil OM content for 2.5 years using automated soil chambers. The randomized block design included two OM additions (no OM, plus OM) by two nitrogen (N) fertilizer rates (0, 0N; 100 kg N ha-1 yr-1, +N) by three replicate plots. Organic matter (chaff) had been applied to the plus OM treatments every three years since 2003, with 80 t OM ha-1applied in total. Secondly, we investigated the interaction between soil OM content and N fertilizer addition on grain yield for two growing seasons. The randomized split-plot design included two OM treatments by five N fertilizer rates (0, 25, 50, 75 and 100 kg N ha-1), by three replicates. Increasing soil OM increased grain yields and soil mineral N, but also enhanced soil N2O emissions. Nitrous oxide emissions were low by international standards (<0.12% of the N fertilizer applied), with total N2O emissions after two years ranked: plus OM (+N; 427 g N2O-N ha-1) > plus OM (0N; 194 g N2O-N ha-1) > no OM (+N; 41 g N2O-N ha-1) = no OM (0N; 14 g N2O-N ha-1). Increasing soil OM also decreased CH4uptake by 30%. Management practices that increase soil OM in sandy-textured rainfed, cropping soils in semi-arid regions should be encouraged as they can improve grain yield without substantial increases in soil N2O or CH4emissions

    Stability of organic matter in soils of the Belgian Loess Belt upon erosion and deposition

    No full text
    Soil erosion has significant impacts on terrestrial carbon (C) dynamics. It removes C-rich topsoil and deposits it in lower areas, which might result in its stabilization against microbial decay. Subsequently, C-poor deeper horizons will be exposed, which also affects C stabilization. We analysed factors governing soil organic C (SOC) mineralization in topsoil (5-10 cm) and subsoil (75-100 and 160-200 cm) horizons from two contrasting sites (up-slope compared with down-slope) in the Belgian Loess Belt; we refer to these as eroding and depositional sites, respectively. Deposition of eroded soil material resulted in significantly increased SOC contents throughout the entire soil profile (2 m) and microbial biomass C in the topsoil. In a 28-day incubation experiment we studied effects of O2 concentrations (0, 5 and 20%) and substrate (glucose) availability on C mineralization, soil microbial biomass and CaCl2-extractable C. Carbon enrichment at the depositional site was accompanied by weak mineralization rates and small contents of water-extractable organic C. Addition of glucose stimulated microbial growth and enhanced respiration, particularly in the subsoil of the depositional site. Availability of O2 showed the expected positive relationship with C mineralization in topsoils only. However, small O2 concentrations did not decrease C mineralization in subsoils, indicating that controls on C dynamics were different in top- and subsoils. We conclude that reduced C mineralization contributed to C accumulation as observed at depositional sites, probably because of poor availability of C in subsoil horizons. Limited availability of O2 in subsoils can be excluded as an important control of soil C accumulation. We hypothesize that the composition of the microbial community after burial of the organic-rich material might play a decisive role

    Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire

    No full text
    International audienceNO emission rates from soils were measured for twelve major African ecosystems in four countries (Congo, Niger, Ivory Coast, and South Africa) and within four major phytogeographic domains: the Guineo-Congolese, Guinean, Sahelian, and Zambezian domains. Measurements were performed during wet and/or dry seasons. All the measurements were made with the same dynamic chamber device, which allowed true comparisons to be made. This study showed that emission rates strongly differed between ecosystems and exhibited a marked temporal variability. Ecosystem effect was highly significant during both the dry and wet seasons. Emission rates were low (7 ng NO-N m(-2) s(-1)) in a seasonally wetted grassland (site 2) and in particular sites subjected to various disturbances, for example soil fauna activity (termite mounds) or past human disturbance (Acacia patches-settlement site). Microbial activity potentials (i.e., carbon mineralization, nitrification, denitrification, and total net N mineralization) were determined for most of the soils where NO fluxes were measured. In some sites, these potential activities were useful to identify the major processes controlling NO emission rates. Denitrification potential was very low and could not explain substantial NO fluxes from broad-and fine-leafed savannas and Hyperthelia savannas of the Zambezian domain. Very low potentials of both nitrification and denitrification could be related to the low NO fluxes for the three Guinean savanna sites studied. NO fluxes were significantly higher during the wet season than the dry season in both savanna and forest ecosystems. Emission rates in savanna ecosystems were significantly increased within a few hours after fire. The measurements presented here provide a unique, consistent database which can be used to further analyze the processes involved in the spatial and temporal variations of NO emissions
    corecore