10 research outputs found

    The multifunctional roles of vegetated strips around and within agricultural fields : A systematic map protocol.

    Get PDF
    Background: Agriculture and agricultural intensification can have significant negative impacts on the environment, including nutrient and pesticide leaching, spreading of pathogens, soil erosion and reduction of ecosystem services provided by terrestrial and aquatic biodiversity. The establishment and management of vegetated strips adjacent to farmed fields (including various field margins, buffer strips and hedgerows) are key mitigation measures for these negative environmental impacts and environmental managers and other stakeholders must often make decisions about how best to design and implement vegetated strips for a variety of different outcomes. However, it may be difficult to obtain relevant, accurate and summarised information on the effects of implementation and management of vegetated strips, even though a vast body of evidence exists on multipurpose vegetated strip interventions within and around fields. To improve the situation, we describe a method for assembling a database of relevant research relating to vegetated strips undertaken in boreo-temperate farming systems (arable, pasture, horticulture, orchards and viticulture). Methods: We will search 13 bibliographic databases, 1 search engine and 37 websites for stakeholder organisations using a predefined and tested search string that focuses on a comprehensive list of vegetated strip synonyms. Non-English language searches in Danish, Finnish, German, Spanish, and Swedish will also be undertaken using a web-based search engine. We will screen search results at title, abstract and full text levels, recording the number of studies deemed non-relevant (with reasons at full text). A systematic map database that displays the meta-data (i.e. descriptive summary information about settings and methods) of relevant studies will be produced following full text assessment. The systematic map database will be displayed as a web-based geographical information system (GIS). The nature and extent of the evidence base will be discussed

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    Immobilization of agricultural phosphorus in temperate floodplain soils of Illinois, USA

    No full text

    The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: Current conditions and projected changes

    No full text

    Towards an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters

    No full text
    corecore