687 research outputs found

    Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite

    Get PDF
    Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the electric conductivity is similar to the pure silver nanowires that Ag/CNT would be promising as building blocks for integrated circuits

    DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers

    Get PDF
    Promoter CpG methylation of tumour suppressor genes (TSGs) is an epigenetic biomarker for TSG identification and molecular diagnosis. We screened genome wide for novel methylated genes through methylation subtraction of a genetic demethylation model of colon cancer (double knockout of DNMT1 and DNMT3B in HCT116) and identified DLEC1 (Deleted in lung and oesophageal cancer 1), a major 3p22.3 TSG, as one of the methylated targets. We further found that DLEC1 was downregulated or silenced in most colorectal and gastric cell lines due to promoter methylation, whereas broadly expressed in normal tissues including colon and stomach, and unmethylated in expressing cell lines and immortalised normal colon epithelial cells. DLEC1 expression was reactivated through pharmacologic or genetic demethylation, indicating a DNMT1/DNMT3B-mediated methylation silencing. Aberrant methylation was further detected in primary colorectal (10 out of 34, 29%) and gastric tumours (30 out of 89, 34%), but seldom in paired normal colon (0 out of 17) and gastric (1 out of 20, 5%) samples. No correlation between DLEC1 methylation and clinical parameters of gastric cancers was found. Ectopic expression of DLEC1 in silenced HCT116 and MKN45 cells strongly inhibited their clonogenicity. Thus, DLEC1 is a functional tumour suppressor, being frequently silenced by epigenetic mechanism in gastrointestinal tumours

    The Accumulation of Organic Carbon in Mineral Soils by Afforestation of Abandoned Farmland

    Get PDF
    The afforestation of abandoned farmland significantly influences soil organic carbon (OC). However, the dynamics between OC inputs after afforestation and the original OC are not well understood. To learn more about soil OC dynamics after afforestation of farmland, we measured the soil OC content in paired forest and farmland plots in Shaanxi Province, China. The forest plots had been established on farmland 18, 24, 48, 100, and 200 yr previously. The natural 13C abundance of soil organic matter was also analyzed to distinguish between crop- and forest-derived C in the afforested soils. We observed a nonlinear accumulation of total OC in the 0–80 cm depth of the mineral soil across time. Total soil OC accumulated more rapidly under forest stands aged 18 to 48 yr than under forest stands aged 100 or 200 yrs. The rate of OC accumulation was also greater in the 0–10 cm depth than in the 10–80 cm depth. Forest-derived OC in afforested soils also accumulated nonlinearly across time, with the greatest increase in the 0–20 cm depth. Forest-derived OC in afforest soils accounted for 52–86% of the total OC in the 0–10 cm depth, 36–61% of the total OC in the 10–20 cm depth, and 11–50% of the total OC in the 20–80 cm depth. Crop-derived OC concentrations in the 0–20 cm depth decreased slightly after afforestation, but there was no change in crop-derived OC concentrations in the 20–80 cm depth. The results of our study support the claim that afforestation of farmland can sequester atmospheric CO2 by increasing soil OC stocks. Changes in the OC stocks of mineral soils after afforestation appear to be influenced mainly by the input of forest-derived C rather than by the loss of original OC

    Modeling Peripheral Olfactory Coding in Drosophila Larvae

    Get PDF
    The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs), enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a Bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%–77% (mean for all odors 45.2%) but was always significantly above chance (5.6%). However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking) assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain

    A Family of Chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera)

    Get PDF
    Chemoperception in invertebrates is mediated by a family of G-protein-coupled receptors (GPCR). To date nothing is known about the molecular mechanisms of chemoperception in coleopteran species. Recently the genome of Tribolium castaneum was sequenced for use as a model species for the Coleoptera. Using blast searches analyses of the T. castaneum genome with previously predicted amino acid sequences of insect chemoreceptor genes, a putative chemoreceptor family consisting of 62 gustatory receptors (Grs) and 26 olfactory receptors (Ors) was identified. The receptors have seven transmembrane domains (7TMs) and all belong to the GPCR receptor family. The expression of the T. castaneum chemoreceptor genes was investigated using quantification real- time RT-PCR and in situ whole mount RT-PCR analysis in the antennae, mouth parts, and prolegs of the adults and larvae. All of the predicted TcasGrs were expressed in the labium, maxillae, and prolegs of the adults but TcasGr13, 19, 28, 47, 62, 98, and 61 were not expressed in the prolegs. The TcasOrs were localized only in the antennae and not in any of the beetles gustatory organs with one exception; the TcasOr16 (like DmelOr83b), which was localized in the antennae, labium, and prolegs of the beetles. A group of six TcasGrs that presents a lineage with the sugar receptors subfamily in Drosophila melanogaster were localized in the lacinia of the Tribolium larvae. TcasGr1, 3, and 39, presented an ortholog to CO2 receptors in D. melanogaster and Anopheles gambiae was recorded. Low expression of almost all of the predicted chemoreceptor genes was observed in the head tissues that contain the brains and suboesophageal ganglion (SOG). These findings demonstrate the identification of a chemoreceptor family in Tribolium, which is evolutionarily related to other insect species

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Lack of Association of Two Common Polymorphisms rs2910164 and rs11614913 with Susceptibility to Hepatocellular Carcinoma: A Meta-Analysis

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in microRNA-coding genes may participate in the process of carcinogenesis by altering the expression of tumor-related microRNAs. It has been suggested that two common SNPs rs2910164 in miR-146a and rs11614913 in miR-196a2 are associated with susceptibility to hepatocellular carcinoma (HCC). However, published results are inconsistent and inconclusive. In the present study, we performed a meta-analysis to systematically summarize the possible association between the two SNPs and the risk for HCC. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a search of case-control studies on the associations of SNPs rs2910164 and/or rs11614913 with susceptibility to HCC in PubMed, EMBASE, ISI Web of Science, Cochrane Central Register of Controlled Trials, ScienceDirect, Wiley Online Library and Chinese National Knowledge Infrastructure databases. Data from eligible studies were extracted for meta-analysis. HCC risk associated with the two polymorphisms was estimated by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). 5 studies on rs2910164 and 4 studies on rs11614913 were included in our meta-analysis. Our results showed that neither allele frequency nor genotype distribution of the two polymorphisms was associated with risk for HCC in all genetic models. Similarly, subgroup analysis in Chinese population showed no association between the two SNPs and the susceptibility to HCC. CONCLUSIONS/SIGNIFICANCE: This meta-analysis suggests that two common SNPs rs2910164 and rs11614913 are not associated with the risk of HCC. Well-designed studies with larger sample size and more ethnic groups are required to further validate the results
    corecore