26 research outputs found

    Diagnostic accuracy of contrast-enhanced MR angiography in severe carotid stenosis: meta-analysis with metaregression of different techniques

    Get PDF
    Contrast-enhanced magnetic resonance angiography (CE-MRA) has become a well-established noninvasive imaging method for the assessment of severe carotid stenosis (70–99% by NASCET criteria). However, CE-MRA is not a standardised technique, but encompasses different concurrent techniques. This review analyses possible differences. A bivariate random effects meta-analysis of 17 primary diagnostic accuracy studies confirmed a high pooled sensitivity of 94.3% and specificity of 93.0% for carotid CE-MRA in severe carotid stenosis. Sensitivity was fairly uniform among the studies, while specificity showed significant variation (I2 = 73%). Metaregressions found significant differences for specificity with two covariates: specificity was higher when using not only maximum intensity projection (MIP) images, but also three-dimensional (3D) images (P = 0.01). Specificity was also higher with electronic images than with hardcopies (P = 0.02). The timing technique (bolus-timed, fluoroscopically triggered or time-resolved) did not result in any significant differences in diagnostic accuracy. Some nonsignificant trends were found for the percentages of severe carotid disease, acquisition time and voxel size. In conclusion, in CE-MRA of severe carotid stenosis the three major timing techniques yield comparably high diagnostic accuracy, electronic images are more specific than hardcopies, and 3D images should be used in addition to MIP images to increase the specificity

    The role of peptides in bone healing and regeneration: A systematic review

    Get PDF
    Background: Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. Methods: A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. Results: Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. Conclusion: Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge

    Studies of jet mass in dijet and W/Z plus jet events

    Get PDF
    This is the pre-print version of the final published paper that is available from the link below.Invariant mass spectra for jets reconstructed using the anti-kT and Cambridge-Aachen algorithms are studied for different jet “grooming” techniques in data corresponding to an integrated luminosity of 5 fb-1, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation

    Studies of jet mass in dijet and W/Z + jet events

    Full text link
    corecore