164 research outputs found

    Amélioration des performances d'un modèle stochastique de génération de hyétogrammes horaires: application au pourtour méditerranéen français

    Get PDF
    Depuis quelques années, un modèle stochastique de génération de hyétogrammes horaires est développé au groupement d'Aix-en-Provence du Cemagref, pour être couplé à une modélisation de la pluie en débit, fournissant ainsi une multitude de scénarios de crues analysés statistiquement et utilisés en prédétermination des débits de crues. L'extension de la zone d'application du modèle de pluies horaires au-delà de sa zone de conception, a fait apparaître une hétérogénéité dans les résultats. Ce constat a entraîné certaines modifications du modèle comme : la recherche d'une loi de probabilité théorique peu sensible aux problèmes d'échantillonnage pour une variable du modèle (intensité d'une averse), la prise en compte originale de la dépendance observée entre deux variables du modèle (durée et intensité d'une averse), et la modélisation de la persistance des averses au sein d'une même période pluvieuse. Ces différentes modifications apportées au modèle initial ont entraîné une très nette amélioration de ses performances sur la cinquantaine de postes pluviographiques du pourtour méditerranéen français. On obtient ainsi un outil beaucoup plus robuste et validé sur une zone étendue, capable de fournir de multiples formes de hyétogrammes, couvrant toute la gamme des fréquences, permettant ainsi de s'affranchir des pluies de projet uniques. On aborde aussi une nouvelle approche du comportement à l'infini des distributions de fréquences des pluies qui semble parfois supérieur à une tendance strictement exponentielle. De plus, l'étude de plusieurs événements par an dont chacun présente plusieurs réalisations des différentes variables du modèle augmente la taille des échantillons analysés, semblant rendre la méthode plus rapidement fiable qu'une approche statistique classique basée par exemple sur l'ajustement de valeurs maximales annuelles.A stochastic model for generating hourly hyetographs has been recently developed, in the Cemagref of Aix-en-Provence, to be coupled with a rainfall runoff conversion modelling. Thus, by simulation of very long periods (1000 years for example), we obtain a large number of hourly hyetographs and flood scenarios that are statistically studied and used in flood predetermination problems. The rainfall model studied is based on the theory that rainfall can be linked to a random and intermittent process whose evolution is described by stochastic laws. It is also based on the hypothesis of independence between variables describing hyetographs and on the hypothesis of the stationary nature of the phenomenon studied. Generating a rainfall time series involves two steps : descriptive study of the phenomenon (nine independent variables are chosen to describe the phenomenon and these variables are defined by a theoretical law of probability fitted to the observations) and creation of a rainfall time series using descriptive variables generated randomly from their law of probability. Initially developed on the Réal Collobrier watershed data, the model has been applied to fifty raingauges located on the Mediterranean French seaboard. The extension of the model applying area has shown heterogeneousness in the results. Therefore, modifications have been made to the model to improve its performances. Among these modifications, three of them have presented notable improvements. A study of the sensitivity of the parameters has been made. Parameters of shape variables and of some other variables had only a slight influence on depth of generated rainfalls. But, the law of mean rainfall intensities clearly differentiates the stations. Then, a theoretical probability distribution for the storm intensity variable, less sensitive to the sampling problems, has been searched. An exponential distribution is fitted to the value smaller than four times the mean of the variable. A slope breakage was then introduced to generate all the values beyond this limit. The breakage at the value four times the mean of the variable and modelling this breakage were based on a study of so-called "regional" distributions of the storm intensity variable. These distributions were designed by clustering the variable's homogenized values for all 50 studied stations. A second modification has been made to develop new model for the observed dependence between two variables (duration and intensity of the storm). The study of this dependence has been considered directly based on the cumulative frequency of the two variables. Then, an additional parameter was defined to model the dependence between the probabilities of the two variables. This parameter characterises the cumulative frequency curve of the sum of the probabilities of the two variables. This point, neglected during a long time, has been very important in the improvement of the model. Finally, the modelling of storm persistence in a same rainfall episode has been studied to generate some high 24 hours maximum rainfalls. Persistence modelling is entirely justified by the fact that "ordinary storms" cluster together around the "main storm" (the "main storm" is the greatest storm of an episode and the "ordinary storms" are the other storms of the episode). When the study of this phenomenon is extended, it can be observed that there is a certain positive dependency between occurrence probability of the "main storm" and occurrence probability of storms which come before or after it. Two combined effects occur : within one rainy episode, the strongest "ordinary storms" are preferentially clustered together around the "main storm", and considering the number of "ordinary storms" throughout all the episodes, the strongest storms close to the "main storm" are preferentially associated with the strongest "main storms" and vice versa. This modification improves the performances of the altitude raingauges, which are characterised by high daily rainfall accumulations. The different modifications added to the initial model, give very important improvements on the calibration of the fifty raingauges studied on the French Mediterranean seaboard. Its aptitude to generate rains observed in Mediterranean climate, strongly variables, consolidates us in the idea of its application on a zone much larger. The generation of hyetographs makes it possible to use the maximum the temporal information of the rain. Thus, we obtain a reliable tool, validated on a large area, for simulating hyetographs and hourly flood scenarios at all frequencies, and used instead of a unique design storm and design flood. The approach allows a new cumulative probability curve extrapolation, which seems sometimes greater than an exponential behaviour. Moreover, the study of many events per year, with many occurrences of the different variables of the model, increase the analysed sample size and seems to make the method more reliable than a statistical approach simply based, for example, on the fitting of annual maximum values

    Automatic transmission parameters measurement and radiation pattern simulation for an RF photonic integrated beamformer

    Get PDF
    We present the implementation and demonstration of a software tool for the performance characterization of integrated N-by-1 photonic beamformers for phased array antennas. The software operates the automatic measurement of the transmission parameters of an equivalent N+1 ports microwave network, corresponding to the complex excitations of the individual antenna elements of the array. The measured excitations are used to simulate the array factor generated by the optical beamformer and to analyze it in terms of maximum directivity, sidelobe levels and wideband behaviour. The software provides a useful tool to test the wideband performance of the network, the effects of excitation inaccuracies, and a straightforward evaluation of the effects of amplitude and phase weighting for beam shaping

    SPR imaging biosensor for the 20S proteasome: sensor development and application to measurement of proteasomes in human blood plasma

    Get PDF
    The 20S proteasome is a multicatalytic enzyme complex responsible for intracellular protein degradation in mammalian cells. Its antigen level or enzymatic activity in blood plasma are potentially useful markers for various malignant and nonmalignant diseases. We have developed a method for highly selective determination of the 20S proteasome using a Surface Plasmon Resonance Imaging (SPRI) technique. It is based on the highly selective interaction between the proteasome’s catalytic β5 subunit and immobilized inhibitors (the synthetic peptide PSI and epoxomicin). Inhibitor concentration and pH were optimized. Analytical responses, linear ranges, accuracy, precision and interferences were investigated. Biosensors based on either PSI and epoxomicin were found to be suitable for quantitative determination of the proteasome, with a precision of ±10% for each, and recoveries of 102% and 113%, respectively, and with little interference by albumin, trypsin, chymotrypsin, cathepsin B and papain. The proteasome also was determined in plasma of healthy subjects and of patients suffering from acute leukemia. Both biosensors gave comparable results (2860 ng·mL-1 on average for control, and 42300 ng·mL-1 on average for leukemia patients)

    Separation of anomalous and synchrotron emissions using WMAP polarization data

    Full text link
    The main goals of this study is to use the information from both WMAP intensity and polarization data to do a separation of the Galactic components, with a focus on the synchrotron and anomalous emissions. Our analysis is made at 23 GHz where the signal-to-noise ratio is the highest and the estimate of the CMB map is less critical. Our estimate of the synchrotron intensity is based on an extrapolation of the Haslam 408 MHz data with a spatially varying spectral index constrained by the WMAP 23 GHz polarization data and a bi-symmetrical spiral model of the galactic magnetic field with a turbulent part following a -5/3 power law spectrum. The 23 GHz polarization data are found to be compatible with a magnetic field with a pitch angle p=-8.5 degrees and an amplitude of the turbulent part of the magnetic field 0.57 times the local value of the field, in agreement with what is found using rotation measures of pulsars and polarized extinction by dust. The synchrotron spectral index between 408 MHz and 23 GHz obtained from polarization data and our model of the magnetic field has a mean value of Beta=-3.00 with a limited spatial variation with a standard deviation of 0.06. When thermal dust, free-free and synchrotron are removed from the WMAP intensity data, the residual anomalous emission is highly correlated with thermal dust emission with a spectrum in agreement with spinning dust models. Considering a classical model of the large scale Galactic magnetic field, we show that the polarization data of WMAP are in favor of a soft synchrotron intensity highly correlated with the 408 MHz data. Furthermore the combination of the WMAP polarization and intensity data brings strong evidence for the presence of unpolarized spinning dust emission in the 20-60 GHz range.Comment: accepted by A and

    Regulation of the High Affinity IgE Receptor (FcεRI) in Human Neutrophils: Role of Seasonal Allergen Exposure and Th-2 Cytokines

    Get PDF
    The high affinity IgE receptor, FcεRI, plays a key role in the immunological pathways involved in allergic asthma. Previously we have demonstrated that human neutrophils isolated from allergic asthmatics express a functional FcεRI, and therefore it was of importance to examine the factors regulating its expression. In this study, we found that neutrophils from allergic asthmatics showed increased expression of FcεRI-α chain surface protein, total protein and mRNA compared with those from allergic non asthmatics and healthy donors (p<0.001). Interestingly, in neutrophils isolated from allergic asthmatics, FcεRI-α chain surface protein and mRNA expression were significantly greater during the pollen season than outside the pollen season (n = 9, P = 0.001), an effect which was not observed either in the allergic non asthmatic group or the healthy donors (p>0.05). Allergen exposure did not affect other surface markers of neutrophils such as CD16/FcγRIII or IL-17R. In contrast to stimulation with IgE, neutrophils incubated with TH2 cytokines IL-9, GM-CSF, and IL-4, showed enhanced FcεRI-α chain surface expression. In conclusion, these results suggest that enhanced FcεRI expression in human neutrophils from allergic asthmatics during the pollen season can make them more susceptible to the biological effects of IgE, providing a possible new mechanism by which neutrophils contribute to allergic asthma

    Planck early results. VI. The High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 . The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100–217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project

    Planck 2013 results. I. Overview of products and scientific results

    Get PDF
    Peer reviewe

    Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    Get PDF
    On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2

    Planck early results. VI. The High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4^2. The white noise level is around 1.5 {\mu}K degree or less in the 3 main CMB channels (100--217GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project.Comment: Replaced by the accepted version for publication, as part of a package of papers describing first results of the Planck mission The paper with figures at full resolution and full color tables can also be downloaded from the ESA site http://www.rssd.esa.int/Planc
    corecore