978 research outputs found

    Abandonment and Forfeiture of Coal Leases in Kentucky

    Get PDF

    Changes in growth of tropical forests: evaluating potential biases

    Get PDF
    Over the past century almost every ecosystem on Earth has come under the influence of changes in atmospheric composition and climate caused by human activity. Tropical forests are among the most productive and extensive ecosystems, and it has been hypothesized that both the dynamics and biomass of apparently undisturbed, old-growth tropical forests have been changing in response to atmospheric changes. Long-term forest sample plots are a critical tool in detecting and monitoring such changes, and our recent analysis of pan-tropical-forest plot data has suggested that the biomass of tropical forests has been increasing, providing a modest negative feedback on the rate of accumulation of atmospheric CO2. However, it has been argued that some of these old forest plot data sets have significant problems in interpretation because of the use of nonstandardized methodologies. In this paper we examine the extent to which potential field methodological errors may bias estimates of total biomass change by detailed examination of tree-by-tree records from up to 120 Neotropical plots to test predictions from theory. Potential positive biases on measurements of biomass change include a bias in site selection, tree deformities introduced by the measurement process, poor methodologies to deal with tree deformities or buttresses, and nonrecording of negative growth increments. We show that, while it is important to improve and standardize methodologies in current and future forest-plot work, any systematic errors introduced by currently identified biases in past studies are small and calculable. We conclude that most tropical-forest plot data are of useful quality, and that the evidence does still weigh conclusively in favor of a recent increase of biomass in old-growth tropical forests

    Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis

    Get PDF
    Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This ‘landscape-divergence hypothesis’, if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems

    Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics

    Get PDF
    Background: Anthropogenic land use changes have contributed considerably to the rise of emerging and re-emerging mosquito-borne diseases. These diseases appear to be increasing as a result of the novel juxtapositions of habitats and species that can result in new interchanges of vectors, diseases and hosts. We studied whether the mosquito community structure varied between habitats and seasons and whether known disease vectors displayed habitat preferences in tropical Australia. Methods: Using CDC model 512 traps, adult mosquitoes were sampled across an anthropogenic disturbance gradient of grassland, rainforest edge and rainforest interior habitats, in both the wet and dry seasons. Nonmetric multidimensional scaling (NMS) ordinations were applied to examine major gradients in the composition of mosquito and vector communities. Results: We captured ~13,000 mosquitoes from 288 trap nights across four study sites. A community analysis identified 29 species from 7 genera. Even though mosquito abundance and richness were similar between the three habitats, the community composition varied significantly in response to habitat type. The mosquito community in rainforest interiors was distinctly different to the community in grasslands, whereas forest edges acted as an ecotone with shared communities from both forest interiors and grasslands. We found two community patterns that will influence disease risk at out study sites, first, that disease vectoring mosquito species occurred all year round. Secondly, that anthropogenic grasslands adjacent to rainforests may increase the probability of novel disease transmission through changes to the vector community on rainforest edges, as most disease transmitting species predominantly occurred in grasslands. Conclusion: Our results indicate that the strong influence of anthropogenic land use change on mosquito communities could have potential implications for pathogen transmission to humans and wildlife

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    Get PDF
    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated

    Optical Light Curve of the Type Ia Supernova 1998bu in M96 and the Supernova Calibration of the Hubble Constant

    Get PDF
    We present the UBVRI light curves of the Type Ia supernova SN 1998bu which appeared in the nearby galaxy M96 (NGC 3368). M96 is a spiral galaxy in the Leo I group which has a Cepheid-based distance. Our photometry allows us to calculate the absolute magnitude and reddening of this supernova. These data, when combined with measurements of the four other well-observed supernovae with Cepheid based distances, allow us to calculate the Hubble constant with respect to the Hubble flow defined by the distant Calan/Tololo Type Ia sample. We find a Hubble constant of 64.0 +/- 2.2(internal) +/- 3.5(external) km/s/Mpc, consistent with most previous estimates based on Type Ia supernovae. We note that the two well-observed Type Ia supernovae in Fornax, if placed at the Cepheid distance to the possible Fornax spiral NGC 1365, are apparently too faint with respect to the Calan/Tololo sample calibrated with the five Type Ia supernovae with Cepheid distances to the host galaxies.Comment: AAS LaTeX, 20 pages, 4 figures, 6 tables, accepted for publication in the Astronomical Journal. Figure 1 (finding chart) not include
    • …
    corecore