8 research outputs found

    Earthquakes, quaternary faults, and seismic hazard in California

    Full text link

    Tachycardia, reduced vagal capacity, and age-dependent ventricular dysfunction arising from diminished expression of the presynaptic choline transporter

    No full text
    Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT−/−) mice exhibit early postnatal lethality, CHT heterozygous (CHT+/−) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT+/− mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT+/− mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT+/− mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease

    Making sense of residues on flaked stone artefacts: learning from blind tests

    Get PDF
    Residue analysis has become a frequently applied method for identifying prehistoric stone tool use. Residues adhering to the stone tool with varying frequencies are interpreted as being the result of an intentional contact with the worked material during use. Yet, other processes during the life cycle of a stone tool or after deposition may leave residues and these residues may potentially lead to misinterpretations. We present a blind test that was designed to examine this issue. Results confirm that production, retouch, prehension, hafting, various incidental contacts during use and deposition may lead to residue depositions that significantly affect the accurateness of identifications of tool-use. All currently applied residue approaches are concerned. We therefore argue for a closer interaction with independent wear studies and a step-wise procedure in which a low magnification of wear traces is used as a first step for selecting potentially used flakes in archaeological contexts. In addition, residue concentrations on a tool's edge should be sufficiently dense before linking them with use

    Ex Situ conservation of potato [Solanum Section Petota (Solanaceae)] genetic resources in genebanks.

    No full text
    Conserving the genetic diversity of potato is critical for the long-term future of potato improvement programs. Further, it is the social and ethical responsibility of the present generation to ensure future generations have the same opportunities to use, exploit, and benefit from the genetic diversity that exists today. Genebanks and the ex situ conservation of potato genetic resources are the only way to ensure this happens; in situ conservation plays a complementary role, but it can never ensure that the vast diversity that exists on earth today is still there for use in the future. Material in ex situ genebanks not only serve as a reservoir of ready-to-use genetic material when needed but also provide invaluable tools for research now and in the future of cultivated potato and its wild relatives
    corecore