9,039 research outputs found
Search for lepton flavor violating decays of a heavy neutral particle in p-pbar collisions at root(s)=1.8 TeV
We report on a search for a high mass, narrow width particle that decays
directly to e+mu, e+tau, or mu+tau. We use approximately 110 pb^-1 of data
collected with the Collider Detector at Fermilab from 1992 to 1995. No evidence
of lepton flavor violating decays is found. Limits are set on the production
and decay of sneutrinos with R-parity violating interactions.Comment: Figure 2 fixed. Reference 4 fixed. Minor changes to tex
Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons
We report a measurement of resonance parameters of the orbitally excited
(L=1) narrow B^0 mesons in decays to B^{(*)+}\pi^- using 1.7/fb of data
collected by the CDF II detector at the Fermilab Tevatron. The mass and width
of the B^{*0}_2 state are measured to be m(B^{*0}_2) =
5740.2^{+1.7}_{-1.8}(stat.) ^{+0.9}_{-0.8}(syst.) MeV/c^2 and \Gamma(B^{*0}_2)
= 22.7^{+3.8}_{-3.2}(stat.) ^{+3.2}_{-10.2}(syst.) MeV/c^2. The mass difference
between the B^{*0}_2 and B^0_1 states is measured to be
14.9^{+2.2}_{-2.5}(stat.) ^{+1.2}_{-1.4}(syst.) MeV/c^2, resulting in a B^0_1
mass of 5725.3^{+1.6}_{-2.2}(stat.) ^{+1.4}_{-1.5}(syst.) MeV/c^2. This is
currently the most precise measurement of the masses of these states and the
first measurement of the B^{*0}_2 width.Comment: 7 pages, 1 figure, 1 table. Submitted to Phys.Rev.Let
Measurement of the fraction of t-tbar production via gluon-gluon fusion in p-pbar collisions at sqrt(s)=1.96 TeV
We present a measurement of the ratio of t-tbar production cross section via
gluon-gluon fusion to the total t-tbar production cross section in p-pbar
collisions at sqrt{s}=1.96 TeV at the Tevatron. Using a data sample with an
integrated luminosity of 955/pb recorded by the CDF II detector at Fermilab, we
select events based on the t-tbar decay to lepton+jets. Using an artificial
neural network technique we discriminate between t-tbar events produced via
q-qbar annihilation and gluon-gluon fusion, and find
Cf=(gg->ttbar)/(pp->ttbar)<0.33 at the 68% confidence level. This result is
combined with a previous measurement to obtain the most precise measurement of
this quantity, Cf=0.07+0.15-0.07.Comment: submitted to Phys. Rev.
Efficient CSL Model Checking Using Stratification
For continuous-time Markov chains, the model-checking problem with respect to
continuous-time stochastic logic (CSL) has been introduced and shown to be
decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be
turned into an approximation algorithm with worse than exponential complexity.
In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient
polynomial-time approximation algorithm for the sublogic in which only binary
until is allowed. In this paper, we propose such an efficient polynomial-time
approximation algorithm for full CSL. The key to our method is the notion of
stratified CTMCs with respect to the CSL property to be checked. On a
stratified CTMC, the probability to satisfy a CSL path formula can be
approximated by a transient analysis in polynomial time (using uniformization).
We present a measure-preserving, linear-time and -space transformation of any
CTMC into an equivalent, stratified one. This makes the present work the
centerpiece of a broadly applicable full CSL model checker. Recently, the
decision algorithm by Aziz et al. was shown to work only for stratified CTMCs.
As an additional contribution, our measure-preserving transformation can be
used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP
201
Recommended from our members
Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research.
BackgroundThe long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman's life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention.Main textDespite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland's structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals-including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols-and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers.ConclusionsAn integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective
Image Search with Text Feedback by Visiolinguistic Attention Learning
Image search with text feedback has promising impacts in various real-world applications, such as e-commerce and internet search. Given a reference image and text feedback from user, the goal is to retrieve images that not only resemble the input image, but also change certain aspects in accordance with the given text. This is a challenging task as it requires the synergistic understanding of both image and text. In this work, we tackle this task by a novel Visiolinguistic Attention Learning (VAL) framework. Specifically, we propose a composite transformer that can be seamlessly plugged in a CNN to selectively preserve and transform the visual features conditioned on language semantics. By inserting multiple composite transformers at varying depths, VAL is incentive to encapsulate the multi-granular visiolinguistic information, thus yielding an expressive representation for effective image search. We conduct comprehensive evaluation on three datasets: Fashion200k, Shoes and FashionIQ. Extensive experiments show our model exceeds existing approaches on all datasets, demonstrating consistent superiority in coping with various text feedbacks, including attribute-like and natural language descriptions
Overdiagnosis in breast cancer screening: the importance of length of observation period and lead time
PMCID: PMC3706885This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Ghost Busting: PT-Symmetric Interpretation of the Lee Model
The Lee model was introduced in the 1950s as an elementary quantum field
theory in which mass, wave function, and charge renormalization could be
carried out exactly. In early studies of this model it was found that there is
a critical value of g^2, the square of the renormalized coupling constant,
above which g_0^2, the square of the unrenormalized coupling constant, is
negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the
Lee model becomes non-Hermitian. It was also discovered that in this
non-Hermitian regime a new state appears whose norm is negative. This state is
called a ghost state. It has always been assumed that in this ghost regime the
Lee model is an unacceptable quantum theory because unitarity appears to be
violated. However, in this regime while the Hamiltonian is not Hermitian, it
does possess PT symmetry. It has recently been discovered that a non-Hermitian
Hamiltonian having PT symmetry may define a quantum theory that is unitary. The
proof of unitarity requires the construction of a new time-independent operator
called C. In terms of C one can define a new inner product with respect to
which the norms of the states in the Hilbert space are positive. Furthermore,
it has been shown that time evolution in such a theory is unitary. In this
paper the C operator for the Lee model in the ghost regime is constructed
exactly in the V/N-theta sector. It is then shown that the ghost state has a
positive norm and that the Lee model is an acceptable unitary quantum field
theory for all values of g^2.Comment: 20 pages, 9 figure
- …