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Current conservation in two-dimensional ac transport

Jian Wang and Qingrong Zheng
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong

Hong Guo
Centre for the Physics of Materials, Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
(Received 28 August 1996; revised manuscript received 1 Novembe) 1996

The electric current conservation in a two-dimensional quantum wire under a time-dependent field is inves-
tigated. Such a conservation is obtained as the global density of states contribution to the emittance is balanced
by the contribution due to the internal charge response inside the sample. However when the global partial
density of states is approximately calculated using scattering matrix only, correction terms are needed to obtain
precise current conservation. We have derived these corrections analytically using a specific two-dimensional
system. We found that when the incident eneEjys near the first subband, our result reduces to the one-
dimensional result. AE approaches to theth subband witm>1, the correction term diverges. This explains
the systematic deviation to precise current conservation observed in a previous numerical calculation.
[S0163-18207)01115-6

I. INTRODUCTION probea and is a purely kinetic term. The ter,; is due to
the Coulomb interaction of electrons inside the sample and is
The dynamic conductance of a quantum coherent mesosterm of capacitive natur® ,; can be computed from the
copic system under a time-dependent external field is théocal density of statéd which is related to the electron dwell
subject of recent interests® In contrast to dc transport in times. Electric current conservation, namely,G,, (o)
the linear regime where the internal potential distribution=0, means thak ,E,z=0 or equivalently'*
inside the sample does not appear explicitly, the ac response
depends sensitively on the internal potential distribution. %E
This internal potential is due to the charge distribution gen- dE < dE
erated by the applied external ac field at the leads and it has . . .
to be de¥erminepdpself—consistean)So far there are two ap- WneredNg/dE is the DOS andry, is the dwell time for

proaches to the coherent ac-transport problem. One is to dg_arncles coming from the probg. Clearly the current con-

rive a formal linear response to a given potential distribution>ervation is established since one realizes HaiN,,/dE

in the samplé. The difficulty with such an approach is that is the physical quantity called injectance which is idenfical
the potential distribution is not knowa priori. Another ap- to 2,D

o a_ﬁ' . .
proach is to investigate the ac response to an external pertur- ~PPIying the above formalism to mesoscopic conductors,
bation which prescribes the potentials in the reservoird

ne needs to compute various physical quantisesh as the
only.”! The external potentials effectively determine thepartlal density of states. These quantities have vivid physical
chemical potential of the reservoirs and the potential distri

dNa Td,
£=2 Dog=", @

‘meaning but are not easy to obtain exactly. For a large sys-
bution in the conductor must be considered a part of thé€M: the GPDOS can be expressed approximately in terms of

response which is to be calculated self-consistently. In thidhe €nergy derivative of the scattering matrix elemefits:

approach, Btiiker and his co-workef€ have formulated a dN 1
current conserving formalism for the low frequency admit- aB_ LB ———="S,z]. 2)
tance of mesoscopic conductors. dE  4mi de dE

In the theory of Bitiker, Prare, and Thomad,it is nec-  Because for a given system one may be able to obtain the
essary to consider the Coulomb interactions between thgcattering matrix, Eq(2) thus provides a practical means of
many charges inside the sample, in order to preserve thesmputing the GPDOS. On the other hand, in order to obtain
current conservation. For a multiprobe conductor the lowgyrrent conservatioprecisely a correction should be added
frequency admittance is found to have the fBfm {5 Eq.(2) which can be neglected for large systems and large
Gop(®) =G p(0)—iwE .5+ O(w?), where G,4(0) is the  energies®3For one-dimensionallD) systems, such a cor-
dc conductanceE ,; is the emittancd,and « (or B) labels  rection has been derived by Gasparrl 3 which contains
the probe. The emittande,; describes the current response the reflection amplitude divided by the energy,
at probea due to a variation of the electrochemical potential o
at probe g to the leading order with respect to frequency dN, dN, Sea
. It can be written &E,z=dN,z/dE-D,z, where the dE _ dE T ml 477E]’ )
term dN,sz/dE is the global partial density of staf8s _
(GPDOS that is related to the scattering matrix. It describeswheredN,/dE=ZX ;dN,z/dE, which is computed from Eq.
the density of states of carriers injected in prgbeeaching (2).

+
ds,s ds,
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We have recently applied the above current conserving

-potential
formalism to atwo-dimensionaimesoscopic conductor in the | L o |
shape of dT junction® Among other things, an interesting p :
and we believe useful finding was that the correct 1D result / X
of Eq. (3) turned out to be inadequate in 2D. First of all, by l ! v I

extending the results of the 1D model considered in Refs.
10,13 to the 2D case, the energyin the second term on the /y T
right hand side of Eq(3) has to be interpreted as the longi- X
tudinal part of the incident energy. Even with this interpre-
tation, there were small but systematic deviations to precise FIG. 1. Schematic plot of the quantum wire systemi poten-
current conservation when the energy is approaching the segal ys(r —r,) is confined inside a quasi-one-dimensional quantum
ond subband. In fact it was found that the DON,/dE as  wire, with ry=(0,y,). The wire width isa. The scattering region is
defined above diverges near the onset of the second subbabetweenx, andx,, wherex,= —x;=L/2. In our calculations, the
and this led to the observed systematic deviatns. parameters are set to=a=1, y,=0.3, andy=—1.0.

We are not aware of any 2D theory to account for the
correction term which should appear in Eg). The purpose - _
of this paper is to investigate such correction terms in two qf|=§n: Xn(Y)(@ne" "+ bye™ ),

dimensions. This not only provides further theoretical in- ) ]
sights to the problem of ac transport, but is also helpful from?N€réxn(y) is the wave function of theth subband along

a practical application point of view. From our own experi- they direction;a, is the incoming wave amplitude and taken

ence, numerical ac-transport calculations can be quite trick $ an input para_metehn is the reflection amplltqde; and
and being able to obtain precise electric current conservation is the Iongltgdmal momentum for thieth que given t?y
often serves as a very stringent check to numerical result .n:E_(nW/a)_ - Note that for eIe_ctron_ travelmg n the first
To this purpose, we have considered the simplest M0§upband,kn .W'th n>1 |s.purely imaginary. Similarly for
dimensional model which is & potential inside a quasi-one- region I which is to the right of the scatterer,
dimensional ballistic conductdf:*® Since quantum scatter- _ ,
ing in this system leads to mode mixing which is the basic Wy =2 xn(y)(Coe*r+d e k),
feature of a two-dimensional system, it provides answers to A
our 2D problem. The advantage of this system is that it cawherec, is transmission amplitude ar}, is set to zero in
be solved in a closed form. We have thus derived analytiour calculation. After matching the boundary conditions at
cally the correction term. In particular, we found that whenx=0, we obtain
the incident energ¥ is within the first subband, our result
essentially reduces to the one-dimensional result(8qAs ap+by=c;,
E is increased to approach theth subband edge with 54
n>1, the correction term diverges. This gives an explanation
to the systematic deviation observed in our previous numeri- ) )
cal calculatior?. iknCn—ikn(an—bp)= % Lnm(@m+ b)),

The paper is organized as follows. In the next section we
present the solution of the 2D scattering problem and derivavherel’ ;.= yx? (Yo) xm(Yo) - Eliminatingc,,, we have
the correction term. Numerical evaluations of the various .
guantities are also presented. The last section serves as a e=Pb, (4)
summary.

X x=0 2

wheree,= -2, ['ymam and Pyn=T"1m— 2ik,6,m- TO find

§ we need to computé® 1. Introducing a new matrix
Il. MODEL AND RESULTS P with  Ppy=—Pun/(2ikp)=amtilnm/(2Km) = nm

+Mum, whereM ,m=iT,m/(2K.). ExpandingP 1 in pow-

Figure 1 shows the system wheré @otential is confined ers of M, we have

inside a quasi-one-dimensional wire with width We as-
sume, for simplicity of the calculation, that the boundaries of
the ballistic conductor are hard walls, i.e., the potential
V=00, Inside the conductor, the potential is zero except that . o )
a & function potentiaV(x,y) = y8(x) 8(y— o) is placed at  FromMI'nm=¥xn (Yo) xm(Yo) Which is separable for index

F=(O,y0). The scattering regior; <x<x, is assumed to be andm, we have
symmetric withx,= —x,;=L/2. From now on we sef=1 Tl =Tl (5)
andm=1/2 to fix our units.

To compute the transmission and reflection amplitudedVe find that
thus the scattering matrix, a mode matching metfdt4is o . .
employed. The electron wave functions are written as fol- (M?) :2 'F_nl %: 'Fin 'F_”:M (a—1)
lows. For the region to the left of the scattefeggion I, see Mg 2k 2ky 2k T 2K nm ’
Fig. 1], (6)

~ 1
p*1=—|+M =1-M+M2=M3-...
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where we have used Ed5) and a=1+iZ,I',,/(2k,).
Equation(6) is equivalent taM 2= (a—1)M, from which we
haveP '=1-M+(a=1)M—(a—1)’°M+...=1-M/e.
Since Pyyy=Pym(—2iky,), we have P=PK, where K,
=—2ikp6,m. Hence P '=K P! where K l=i/
(2k,,) 6pm- Finally, we obtain the matrix elements,

g i iTim
(Pil)nmzzll (Kil)nl(Pil)Im:Z 2_kn§n|<5lm_2knlqa’>
i ( irnm>
= 3| O Zcal (@)

dN, dN,

|bn|2 ikl
dE g M

Sea 1 E ]
ani | Tam Zikk o 12
Hence we found that for this 2D system, there are two cor-
rection terms to the DOS. Clearly the first correction term,
i.e., the second term on the right hand side of B@), is
generic, as it can be written in terms of the scattering matrix
element. This term is similar to the corresponding term in
Eq. (3) of the 1D case, except that the total eneEgyn Eq.
(3) is now interpreted as the transport enekéyln fact this
term has been guessed in our earlier wbfere is a second
correction term[the third term of Eq.(12)], which comes
solely due to mode mixing in our 2D system, and under-
standably it does not exist in 1D casés.

For small incident energies, i.e., 4§ goes to zero,

We shall specialize to consider the incident electron beingp, |2, k2 for n>1. Therefore the second correction term of

in the first subbanda,=é,; or e,=—T",;. Using Egs.(4)
and (7) the reflection and transmission amplitudes are

i ir
— -1 — ___nmi_
by=2 (P >nmem—§2kn(5nm kaa>< L)

i ir . Th i a—1

B RS ey el R
_irnl
- 2kpa

8

Cn=0n1t by 9

For our system the scattering matrix elemes)ig are given
by s;,=b;exp(k;L) and s;,=c,exp(k,L). The approximate
DOS becomes, using EQ),

N, 1 . ds, dsl,
dE 4mi5 \5FTdE ~ dE >°f

(10

S Y T R
T 4mk, "\ 47KE) T dms Tkok,

Eqg. (12) is actually negligible at small energies. Indeed, this
is the case in our earlier numerical calculatonéere cur-
rent conservation was very well satisfied at low energies us-
ing Eqg. (3). However, as the energy is approaching itk
subband edge, for smak,—0 with n>1, |b,|? remains
finite. Hence according to Eq12) the second correction
term diverges at these higher subband edges. This explains
the observation of our calculatidwhere systematic numeri-
cal errors exist in current conservation near the second sub-
band edge. For energies within the first subband, as men-
tioned abovek, are all pure imaginary numbers witi>1.
Hence with large system siig the factor exgk,L) is very
small as long a&,# 0. However we emphasize that the sec-
ond correction term becomes dominant very near each sub-
band edge thus must be included in order to obtain precise
current conservation.

With the analysis discussed so far, the emittaligg can
be written in a closed form. However to obtain the values of
E.z as a function of energy some numerical computation on
various summations are needed. We have evaluated the
quantity D, 5 using the Thomas-Fermi approximatich
which is more appropriate to a metallic conductor,

Da,,e:f dsr[dn(a,r)/dE][dn(r,ﬁ)/dE], 13

dn(r)/dE

where the local density of statdsm(ﬂﬂ)/dE is the injectiv-

To derive this expression we have used a relatiority which measures the additional local charge density

2bY +1=ala*, which follows directly from the unitary prought into the sample at pointy the oscillating chemical
condition of the scattering matrix. Next we compute thepotential at probes. The injectivity can be expressed in
dwell time and hence the precise DQ& opposed to the terms of the scattering wave function,

approximate DOS of Eq10)]:

dn(r,8) < WM
dE B n 27TUBn

1 : (14

1
Td,lzaf W |2dx dy+ ;j W |2dx dy
! ! wherev g, is the velocity of carriers at the Fermi energy at

L +Rrd b b — mode n in probe . dn(a,F)/dE is the emissivity which
- 2ky ! 2ik§ describes the local density of states of carriers at p6int

which are emitted by the conductor at prokelt has been
wherev =%k, /m is the velocity of the carriers at the Fermi showr that in the absence of magnetic field the injectivity is
energy. From Eqs(1), (10), and(11), we arrive at the fol- equal to the emissivity. Using Eg&L0), (13), and(14), we
lowing central result of this work: can calculate the emittance.

eik”L—l
2
+; |bn| 2|klkn ’ (ll)
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. FIG. 3. The dynamic part of the admittancek,,
FIG. 2. The current response to the inteal poten@s,  =dN,,/dE-D,, as a function of energy. Solid lin&,;; dotted
computed from Eq(13) as a function of energf. Solid line:  jine: E,, .

D,,; dotted line:D,;. Inset: the global partial density of states and

the transmission coefficient as functions of electron ené&rggolid due to the approximate nature of the partial density of states
I?ne: transmission_ coefficienT(_E);Zdottezd line:dN;,/dE; dashed as obtained using Eq2) for the finite scattering volume.
line: Ny, /dE. Unit of energy ish“/2mar. After including the two corrections to the DOS as derived in
Eqg. (12), however, we did obtain a perfect current conserva-
tion for the whole energy range. This is not surprising since
after all Eq.(12) is an exact result for this quantum system.

Specifically, for the system of Fig. 1 we consider an inci-
dent electron coming from the lefibrobe 1. For this system,
there is a quasibound state at an endfgwhich is charac-
terized by the complete reflection when the strength of the
é-function potentialy is negative.E, decreases aly| in-

creases. For the purpose of illustration, we have set |, summary, we have investigated the electric current
a=L=1,y,=0.3, andy=—1 and found that resonant be- ¢,nservation in a two-dimensional ballistic conductor under
havior occurs ak,=36.67. Although using this set of pa- 3 {ime-dependent field. Similar to that of the 1D case, we
rameters, we emphasize that the analytical result(E2).is  found that in order to obtain precise current conservation,
valid for both positive and negative. certain corrections to the density of states as obtained ap-
_In the inset of Fig. 2, we plot the global DOS together yroximately from the scattering matrix must be included. We
with the transmission coefficierif as functions of energy haye derived these corrections analytically for a specific two-
E. As expected, the transmission coefficieRtE) (solid  gimensional system and found that there are two correction
line) has large values for almost &lexcept afE; where the  terms. One of the correction terms has the same form as that
reflection coefficienR(E,)=1. This can also be seen from of the 1D case, while the second correction term is purely
the behavior of the global partial DOS for reflection due to mode mixing characteristic of 2D quantum scattering.
dNy;/dE (dotted ling which peaks whe(E=E;)=0.On | particular, when the incident enerdyis within the first
the other handdN,,/dE (dashed ling which is the global  sybband, our result essentially reduces to the one-
partial DOS for transmission, takes the minimum value aidimensional result iE is not too high. On the other hand as
E= Er . This behavior is (}OﬂSiStent with that of a 1D SyStemE approaches to theth subband W|t|‘n>1, the correction
made of a symmetric scatterer, where one has term diverges at the subband edges. Hence in 2D the mode
dN;;/dE~RANdE anddN,,/dE~T dN/dE. The quanti-  mixing leads to important changes in the global density of
tiesD;; andDy; are shown as the solid and dotted lines instates and must be included if precise electric current conser-
Fig. 2. Both curves reach maximum values near the resonaition is desired. Finally, the correction term found here pro-
point E,, which is expected sincB 4 are proportional to  vides a qualitative explanation for the small but systematic
the dwell time or the DOS. The emittan&g,; is plotted in  deviation to precise current conservation observed in our
Fig. 3. BothE;; (solid ling) and E, (dotted ling reach ex-  previous numerical calculation®n a 2D quantum wire in
tremal values at the resonant point. The system respondfe shape of th& junction.
differently for different energy, either capacitively when
E;1=—E,>0, or inductively otherwise. Figure 3 shows
these responses clearly as the energy is varied. The capaci-
tive behavior at thef'~0 resonance is the same as that ob- We gratefully acknowledge support by a RGC grant from
served in the 20T junction® On the other hand, for a 1D the Government of Hong Kong under Grant No. HKU 261/
tunneling systerhthe response is inductive at its resonance95P, a research grant from the Croucher Foundation, the
But in that case the resonance is marked by the transmissiddatural Sciences and Engineering Research Council of
coefficient being near unity. Canada, and le Fonds pour la Formation de Chercheurs et
Finally, to confirm electric current conservation, essen{'Aide a la Recherche de la Province du ®ee. We thank
tially the two curves of Fig. 3 must add to zero. Clearly thesethe Computer Center of the University of Hong Kong for
curves do not cancel each other as the figure shows, exactbpmputational facilities.
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