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Current conservation in two-dimensional ac transport

Jian Wang and Qingrong Zheng
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
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Centre for the Physics of Materials, Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8

~Received 28 August 1996; revised manuscript received 1 November 1996!

The electric current conservation in a two-dimensional quantum wire under a time-dependent field is inves-
tigated. Such a conservation is obtained as the global density of states contribution to the emittance is balanced
by the contribution due to the internal charge response inside the sample. However when the global partial
density of states is approximately calculated using scattering matrix only, correction terms are needed to obtain
precise current conservation. We have derived these corrections analytically using a specific two-dimensional
system. We found that when the incident energyE is near the first subband, our result reduces to the one-
dimensional result. AsE approaches to thenth subband withn.1, the correction term diverges. This explains
the systematic deviation to precise current conservation observed in a previous numerical calculation.
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I. INTRODUCTION

The dynamic conductance of a quantum coherent me
copic system under a time-dependent external field is
subject of recent interests.1–5 In contrast to dc transport in
the linear regime where the internal potential distributi
inside the sample does not appear explicitly, the ac respo
depends sensitively on the internal potential distributi
This internal potential is due to the charge distribution g
erated by the applied external ac field at the leads and it
to be determined self-consistently.1 So far there are two ap
proaches to the coherent ac-transport problem. One is to
rive a formal linear response to a given potential distribut
in the sample.6 The difficulty with such an approach is tha
the potential distribution is not knowna priori. Another ap-
proach is to investigate the ac response to an external pe
bation which prescribes the potentials in the reservo
only.7,1 The external potentials effectively determine t
chemical potential of the reservoirs and the potential dis
bution in the conductor must be considered a part of
response which is to be calculated self-consistently. In
approach, Bu¨ttiker and his co-workers1,8 have formulated a
current conserving formalism for the low frequency adm
tance of mesoscopic conductors.

In the theory of Bu¨ttiker, Prêtre, and Thomas,1 it is nec-
essary to consider the Coulomb interactions between
many charges inside the sample, in order to preserve
current conservation. For a multiprobe conductor the l
frequency admittance is found to have the form8,9

Gab(v)5Gab(0)2 ivEab1O(v2), whereGab(0) is the
dc conductance,Eab is the emittance,8 anda ~or b) labels
the probe. The emittanceEab describes the current respon
at probea due to a variation of the electrochemical potent
at probeb to the leading order with respect to frequen
v. It can be written as8 Eab5dNab /dE2Dab , where the
term dNab /dE is the global partial density of states10

~GPDOS! that is related to the scattering matrix. It describ
the density of states of carriers injected in probeb reaching
550163-1829/97/55~15!/9770~5!/$10.00
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probea and is a purely kinetic term. The termDab is due to
the Coulomb interaction of electrons inside the sample an
a term of capacitive nature.Dab can be computed from the
local density of states1,8which is related to the electron dwe
times. Electric current conservation, namely,(aGab(v)
50, means that(aEab50 or equivalently1,11

dNb

dE
[(

a

dNab

dE
5(

a
Dab5

td,b
h

, ~1!

wheredNb /dE is the DOS andtd,b is the dwell time for
particles coming from the probeb. Clearly the current con-
servation is established since one realizes that(adNab /dE
is the physical quantity called injectance which is identic8

to (aDab .
Applying the above formalism to mesoscopic conducto

one needs to compute various physical quantities5 such as the
partial density of states. These quantities have vivid phys
meaning5 but are not easy to obtain exactly. For a large s
tem, the GPDOS can be expressed approximately in term
the energy derivative of the scattering matrix elements:12

dNab

dE
5

1

4p i S sab
† dsab

dE
2
dsab

†

dE
sabD . ~2!

Because for a given system one may be able to obtain
scattering matrix, Eq.~2! thus provides a practical means
computing the GPDOS. On the other hand, in order to ob
current conservationprecisely, a correction should be adde
to Eq.~2! which can be neglected for large systems and la
energies.10,13For one-dimensional~1D! systems, such a cor
rection has been derived by Gasparianet al.13 which contains
the reflection amplitude divided by the energy,

dNa

dE
5
dN̄a

dE
1ImH saa

4pE J , ~3!

wheredN̄a /dE[(bdNab /dE, which is computed from Eq
~2!.
9770 © 1997 The American Physical Society
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55 9771CURRENT CONSERVATION IN TWO-DIMENSIONAL ac . . .
We have recently applied the above current conserv
formalism to atwo-dimensionalmesoscopic conductor in th
shape of aT junction.5 Among other things, an interestin
and we believe useful finding was that the correct 1D re
of Eq. ~3! turned out to be inadequate in 2D. First of all, b
extending the results of the 1D model considered in R
10,13 to the 2D case, the energyE in the second term on th
right hand side of Eq.~3! has to be interpreted as the long
tudinal part of the incident energy. Even with this interpr
tation, there were small but systematic deviations to pre
current conservation when the energy is approaching the
ond subband. In fact it was found that the DOSdN̄a /dE as
defined above diverges near the onset of the second sub
and this led to the observed systematic deviations.5

We are not aware of any 2D theory to account for t
correction term which should appear in Eq.~3!. The purpose
of this paper is to investigate such correction terms in t
dimensions. This not only provides further theoretical
sights to the problem of ac transport, but is also helpful fr
a practical application point of view. From our own expe
ence, numerical ac-transport calculations can be quite tr
and being able to obtain precise electric current conserva
often serves as a very stringent check to numerical res
To this purpose, we have considered the simplest t
dimensional model which is ad potential inside a quasi-one
dimensional ballistic conductor.14,15 Since quantum scatter
ing in this system leads to mode mixing which is the ba
feature of a two-dimensional system, it provides answer
our 2D problem. The advantage of this system is that it
be solved in a closed form. We have thus derived anal
cally the correction term. In particular, we found that wh
the incident energyE is within the first subband, our resu
essentially reduces to the one-dimensional result Eq.~3!. As
E is increased to approach thenth subband edge with
n.1, the correction term diverges. This gives an explana
to the systematic deviation observed in our previous num
cal calculation.5

The paper is organized as follows. In the next section
present the solution of the 2D scattering problem and de
the correction term. Numerical evaluations of the vario
quantities are also presented. The last section serves
summary.

II. MODEL AND RESULTS

Figure 1 shows the system where ad potential is confined
inside a quasi-one-dimensional wire with widtha. We as-
sume, for simplicity of the calculation, that the boundaries
the ballistic conductor are hard walls, i.e., the poten
V5`. Inside the conductor, the potential is zero except t
a d function potentialV(x,y)5gd(x)d(y2y0) is placed at
rW5(0,y0). The scattering regionx1,x,x2 is assumed to be
symmetric withx252x15L/2. From now on we set\51
andm51/2 to fix our units.

To compute the transmission and reflection amplitu
thus the scattering matrix, a mode matching method16,17,14is
employed. The electron wave functions are written as
lows. For the region to the left of the scatterer@region I, see
Fig. 1#,
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C I5(
n

xn~y!~ane
iknx1bne

2 iknx!,

wherexn(y) is the wave function of thenth subband along
they direction;an is the incoming wave amplitude and take
as an input parameter;bn is the reflection amplitude; and
kn is the longitudinal momentum for thenth mode given by
kn
25E2(np/a)2. Note that for electron traveling in the firs
subband,kn with n.1 is purely imaginary. Similarly for
region II which is to the right of the scatterer,

C II5(
n

xn~y!~cne
iknx1dne

2 iknx!,

wherecn is transmission amplitude anddn is set to zero in
our calculation. After matching the boundary conditions
x50, we obtain

an1bn5cn

and

ikncn2 ikn~an2bn!5(
m

Gnm~am1bm!,

whereGnm5gxn* (y0)xm(y0). Eliminatingcn , we have

eW5PbW , ~4!

whereen52(mGnmam and Pnm5Gnm22ikndnm . To find
bW we need to computeP21. Introducing a new matrix
P̃ with P̃nm[2Pnm /(2ikm)5dnm1 iGnm /(2km)5dnm
1Mnm , whereMnm[ iGnm /(2km). ExpandingP̃

21 in pow-
ers ofM , we have

P̃215
1

I1M
5I2M1M22M3••• .

FromGnm5gxn* (y0)xm(y0) which is separable for indexn
andm, we have

GnmGml5GnlGmm. ~5!

We find that

~M2!nm5(
l

iGnl

2kl

iG lm

2km
5
iGnm

2km
(
l

iG l l

2kl
5Mnm~a21!,

~6!

FIG. 1. Schematic plot of the quantum wire system: ad poten-

tial gd(rW2rW0) is confined inside a quasi-one-dimensional quant

wire, with rW05(0,y0). The wire width isa. The scattering region is
betweenx1 andx2, wherex252x15L/2. In our calculations, the
parameters are set toL5a51, y050.3, andg521.0.
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where we have used Eq.~5! and a[11 i(nGnn /(2kn).
Equation~6! is equivalent toM25(a21)M , from which we
have P̃21512M1(a21)M2(a21)2M1 . . .512M /a.
Since Pnm5 P̃nm(22ikm), we haveP5 P̃K, where Knm

522ikndnm . Hence P215K21P̃21, where Knm
215 i /

(2kn)dnm . Finally, we obtain the matrix elements,

~P21!nm5(
l

~K21!nl~ P̃
21! lm5(

l

i

2kn
dnlS d lm2

iG lm

2kma D
5

i

2kn
S dnm2

iGnm

2kma D . ~7!

We shall specialize to consider the incident electron be
in the first subband:an5dn1 or en52Gn1. Using Eqs.~4!
and ~7! the reflection and transmission amplitudes are

bn5(
m

~P21!nmem5(
m

i

2kn
S dnm2

iGnm

2kma D ~2Gm1!

5
i

2kn
S 2Gn11(

m

iGmm

2km

Gn1

a D 52
i

2kn
Gn1S 12

a21

a D
5

2 iGn1

2kna
, ~8!

cn5dn11bn. ~9!

For our system the scattering matrix elementssab are given
by s115b1exp(ik1L) ands125c1exp(ik1L). The approximate
DOS becomes, using Eq.~2!,

dN̄a

dE
5

1

4p i(b S sab
† dsab

dE
2
dsab

†

dE
sabD

5
L

4pk1
2ImS b1

4pk1
2D 2

1

4p(
n

ubnu2

ik1kn
. ~10!

To derive this expression we have used a relat
2b1*115a/a* , which follows directly from the unitary
condition of the scattering matrix. Next we compute t
dwell time and hence the precise DOS@as opposed to the
approximate DOS of Eq.~10!#:

td,15
1

vEI uC I u2dx dy1
1

vEII uC II u2dx dy

5
L

2k1
1ReS b1eik1L21

2ik1
2 D 1(

n
ubnu2

eiknL21

2ik1kn
, ~11!

wherev5\k1 /m is the velocity of the carriers at the Ferm
energy. From Eqs.~1!, ~10!, and ~11!, we arrive at the fol-
lowing central result of this work:
g

n

dNa

dE
5
dN̄a

dE
1ImH saa

4pk1
2 J 1

1

4p (
n52

ubnu2

ik1kn
eiknL. ~12!

Hence we found that for this 2D system, there are two c
rection terms to the DOS. Clearly the first correction ter
i.e., the second term on the right hand side of Eq.~12!, is
generic, as it can be written in terms of the scattering ma
element. This term is similar to the corresponding term
Eq. ~3! of the 1D case, except that the total energyE in Eq.
~3! is now interpreted as the transport energyk1

2. In fact this
term has been guessed in our earlier work.5 There is a second
correction term@the third term of Eq.~12!#, which comes
solely due to mode mixing in our 2D system, and und
standably it does not exist in 1D cases.13

For small incident energies, i.e., ask1 goes to zero,
ubnu2→k1

2 for n.1. Therefore the second correction term
Eq. ~12! is actually negligible at small energies. Indeed, th
is the case in our earlier numerical calculations5 where cur-
rent conservation was very well satisfied at low energies
ing Eq. ~3!. However, as the energy is approaching thenth
subband edge, for smallkn→0 with n.1, ubnu2 remains
finite. Hence according to Eq.~12! the second correction
term diverges at these higher subband edges. This exp
the observation of our calculation5 where systematic numeri
cal errors exist in current conservation near the second
band edge. For energies within the first subband, as m
tioned abovekn are all pure imaginary numbers withn.1.
Hence with large system sizeL, the factor exp(iknL) is very
small as long asknÞ0. However we emphasize that the se
ond correction term becomes dominant very near each
band edge thus must be included in order to obtain pre
current conservation.

With the analysis discussed so far, the emittanceEab can
be written in a closed form. However to obtain the values
Eab as a function of energy some numerical computation
various summations are needed. We have evaluated
quantity Da,b using the Thomas-Fermi approximation1,8

which is more appropriate to a metallic conductor,

Da,b5E d3r
@dn~a,rW !/dE#@dn~rW,b!/dE#

dn~rW !/dE
, ~13!

where the local density of statesdn(rW,b)/dE is the injectiv-
ity which measures the additional local charge dens
brought into the sample at pointrW by the oscillating chemica
potential at probeb. The injectivity can be expressed i
terms of the scattering wave function,1

dn~rW,b!

dE
5(

n

uCbn~rW !u2

2pvbn
, ~14!

wherevbn is the velocity of carriers at the Fermi energy
mode n in probe b. dn(a,rW)/dE is the emissivity which
describes the local density of states of carriers at poinrW
which are emitted by the conductor at probea. It has been
shown9 that in the absence of magnetic field the injectivity
equal to the emissivity. Using Eqs.~10!, ~13!, and ~14!, we
can calculate the emittance.
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55 9773CURRENT CONSERVATION IN TWO-DIMENSIONAL ac . . .
Specifically, for the system of Fig. 1 we consider an in
dent electron coming from the left~probe 1!. For this system,
there is a quasibound state at an energyEr which is charac-
terized by the complete reflection when the strength of
d-function potentialg is negative.Er decreases asugu in-
creases. For the purpose of illustration, we have
a5L51, y050.3, andg521 and found that resonant be
havior occurs atEr536.67. Although using this set of pa
rameters, we emphasize that the analytical result Eq.~12! is
valid for both positive and negativeg.

In the inset of Fig. 2, we plot the global DOS togeth
with the transmission coefficientT as functions of energy
E. As expected, the transmission coefficientT(E) ~solid
line! has large values for almost allE except atEr where the
reflection coefficientR(Er)51. This can also be seen from
the behavior of the global partial DOS for reflectio
dN11/dE ~dotted line! which peaks whenT(E5Er)50. On
the other hand,dN21/dE ~dashed line!, which is the global
partial DOS for transmission, takes the minimum value
E5Er . This behavior is consistent with that of a 1D syste
made of a symmetric scatterer,10 where one has
dN11/dE;R dN/dE anddN21/dE;T dN/dE. The quanti-
tiesD11 andD21 are shown as the solid and dotted lines
Fig. 2. Both curves reach maximum values near the reso
point Er , which is expected sinceDab are proportional to
the dwell time or the DOS. The emittanceEab is plotted in
Fig. 3. BothE11 ~solid line! andE12 ~dotted line! reach ex-
tremal values at the resonant point. The system respo
differently for different energy, either capacitively whe
E1152E12.0, or inductively otherwise. Figure 3 show
these responses clearly as the energy is varied. The ca
tive behavior at theT'0 resonance is the same as that o
served in the 2DT junction.5 On the other hand, for a 1D
tunneling system1 the response is inductive at its resonan
But in that case the resonance is marked by the transmis
coefficient being near unity.

Finally, to confirm electric current conservation, esse
tially the two curves of Fig. 3 must add to zero. Clearly the
curves do not cancel each other as the figure shows, ex

FIG. 2. The current response to the internal potential,Dab ,
computed from Eq.~13! as a function of energyE. Solid line:
D11; dotted line:D21. Inset: the global partial density of states a
the transmission coefficient as functions of electron energyE. Solid
line: transmission coefficientT(E); dotted line:dN11/dE; dashed
line: dN21/dE. Unit of energy is\
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due to the approximate nature of the partial density of sta
as obtained using Eq.~2! for the finite scattering volume
After including the two corrections to the DOS as derived
Eq. ~12!, however, we did obtain a perfect current conser
tion for the whole energy range. This is not surprising sin
after all Eq.~12! is an exact result for this quantum system

III. SUMMARY

In summary, we have investigated the electric curr
conservation in a two-dimensional ballistic conductor und
a time-dependent field. Similar to that of the 1D case,
found that in order to obtain precise current conservati
certain corrections to the density of states as obtained
proximately from the scattering matrix must be included. W
have derived these corrections analytically for a specific tw
dimensional system and found that there are two correc
terms. One of the correction terms has the same form as
of the 1D case, while the second correction term is pur
due to mode mixing characteristic of 2D quantum scatteri
In particular, when the incident energyE is within the first
subband, our result essentially reduces to the o
dimensional result ifE is not too high. On the other hand a
E approaches to thenth subband withn.1, the correction
term diverges at the subband edges. Hence in 2D the m
mixing leads to important changes in the global density
states and must be included if precise electric current con
vation is desired. Finally, the correction term found here p
vides a qualitative explanation for the small but systema
deviation to precise current conservation observed in
previous numerical calculations5 on a 2D quantum wire in
the shape of theT junction.
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FIG. 3. The dynamic part of the admittance,Eab

[dNab /dE2Dab as a function of energy. Solid line:E11; dotted
line: E21.
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9M. Büttiker and T. Christen, inQuantum Transport in Semicon
ductor Submicron Structures,edited by B. Kramer~Kluwer Aca-
demic Publishers, Dordrecht, 1996!.

10V. Gasparian, T. Christen, and M. Bu¨ttiker, Phys. Rev. A54,
4022 ~1996!.

11G. Iannaccone, Phys. Rev. B51 4727 ~1995!.
12Y. Avishai and Y. B. Band, Phys. Rev. B32, 2674~1985!.
13V. Gasparianet al., Phys. Rev. B51, 6743~1995!.
14P. F. Bagwell, Phys. Rev. B41, 10 354~1990!.
15Another example of an ‘‘impurity’’ in a quantum wire is given b

Christen and Bu¨ttiker who treated the quantum point contact
an external ac field. See, T. Christen and M. Bu¨ttiker, Phys. Rev.
Lett. 77, 143 ~1996!.

16R. L. Schult, D. G. Ravenhall, and H. W. Wyld, Phys. Rev. B39,
5476 ~1989!.

17See, for example, F. Sols, M. Macucci, U. Ravaioli, and K. He
Appl. Phys. Lett.54, 350 ~1989!; Jian Wang, Yongjiang Wang
and Hong Guo,ibid. 65, 1793~1994!.


