34 research outputs found
Family history of cancer and the risk of childhood brain tumors: a pooled analysis of the ESCALE and ESTELLE studies (SFCE)
PURPOSE: Although some specific genetic syndromes such as neurofibromatosis (NF) have been identified as risk factor of childhood brain tumors (CBT), the potential role of inherited susceptibility in CBT has yet to be elucidated.
METHODS: To further investigate this, we conducted a pooled analysis of two nationwide case-control studies ESCALE and ESTELLE. The mothers of 509 CBT cases and 3,102 controls aged under 15Â years who resided in France at diagnosis/interview, frequency-matched by age and gender, responded to a telephone interview conducted by trained interviewers. Pooled odds ratio (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic regression.
RESULTS: CBT was significantly associated with the family history of cancer in relatives (OR 1.2, 95% CI 1.0-1.5). The OR was slightly higher for maternal relatives than for paternal relatives, and when at least two relatives had a history of cancer. CBT was significantly associated with a family history of brain tumor (OR 2.1, 95% CI 1.3-3.7). This association seemed stronger for first-degree relatives (mother, father, and siblings), for whom, by contrast, no association was seen for cancers other than CBT. No specificity by CBT subtypes or by age of the children were found for any of these findings.
CONCLUSION: Our findings support the hypothesis of a familial susceptibility of CBT, not due to being a known NF carrier
Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency
Background & aims: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood.Methods: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120
7 depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000
7 depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls.Results: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor.Conclusions: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk
Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas
Diffuse intrinsic pontine glioma (DIPG) is one of the most frequent malignant pediatric brain tumor and its prognosis is universaly fatal. No significant improvement has been made in last thirty years over the standard treatment with radiotherapy. To address the paucity of understanding of DIPGs, we have carried out integrated molecular profiling of a large series of samples obtained with stereotactic biopsy at diagnosis. While chromosomal imbalances did not distinguish DIPG and supratentorial tumors on CGHarrays, gene expression profiling revealed clear differences between them, with brainstem gliomas resembling midline/thalamic tumours, indicating a closely-related origin. Two distinct subgroups of DIPG were identified. The first subgroup displayed mesenchymal and pro-angiogenic characteristics, with stem cell markers enrichment consistent with the possibility to grow tumor stem cells from these biopsies. The other subgroup displayed oligodendroglial features, and appeared largely driven by PDGFRA, in particular through amplification and/or novel missense mutations in the extracellular domain. Patients in this later group had a significantly worse outcome with an hazard ratio for early deaths, ie before 10 months, 8 fold greater that the ones in the other subgroup (p = 0.041, Cox regression model). The worse outcome of patients with the oligodendroglial type of tumors was confirmed on a series of 55 paraffin-embedded biopsy samples at diagnosis (median OS of 7.73 versus 12.37 months, p = 0.045, log-rank test). Two distinct transcriptional subclasses of DIPG with specific genomic alterations can be defined at diagnosis by oligodendroglial differentiation or mesenchymal transition, respectively. Classifying these tumors by signal transduction pathway activation and by mutation in pathway member genes may be particularily valuable for the development of targeted therapies
Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.
BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario
Constitutional microsatellite instability, genotype, and phenotype correlations in constitutional mismatch repair deficiency
Background & AimsConstitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype–phenotype correlations using novel MSI markers selected for instability in blood.MethodsThree CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls.ResultsThirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%–100.0%) and specificity (95% CI 97.9%–100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor.ConclusionsWe present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
Patients with High-Grade Gliomas and Cafe-au-Lait Macules: Is Neurofibromatosis Type 1 the Only Diagnosis?
Hereditary cancer genetic
Patients with High-Grade Gliomas and Cafe-au-Lait Macules: Is Neurofibromatosis Type 1 the Only Diagnosis?
status: publishe
Current recommendations for cancer surveillance in Gorlin syndrome: a report from the SIOPE host genome working group (SIOPE HGWG).
Gorlin syndrome (MIM 109,400), a cancer predisposition syndrome related to a constitutional pathogenic variation (PV) of a gene in the Sonic Hedgehog pathway (PTCH1 or SUFU), is associated with a broad spectrum of benign and malignant tumors. Basal cell carcinomas (BCC), odontogenic keratocysts and medulloblastomas are the main tumor types encountered, but meningiomas, ovarian or cardiac fibromas and sarcomas have also been described. The clinical features and tumor risks are different depending on the causative gene. Due to the rarity of this condition, there is little data on phenotype-genotype correlations. This report summarizes genotype-based recommendations for screening patients with PTCH1 and SUFU-related Gorlin syndrome, discussed during a workshop of the Host Genome Working Group of the European branch of the International Society of Pediatric Oncology (SIOPE HGWG) held in January 2020. In order to allow early detection of BCC, dermatologic examination should start at age 10 in PTCH1, and at age 20 in SUFU PV carriers. Odontogenic keratocyst screening, based on odontologic examination, should begin at age 2 with annual orthopantogram beginning around age 8 for PTCH1 PV carriers only. For medulloblastomas, repeated brain MRI from birth to 5Â years should be proposed for SUFU PV carriers only. Brain MRI for meningiomas and pelvic ultrasound for ovarian fibromas should be offered to both PTCH1 and SUFU PV carriers. Follow-up of patients treated with radiotherapy should be prolonged and thorough because of the risk of secondary malignancies. Prospective evaluation of evidence of the effectiveness of these surveillance recommendations is required