1,953 research outputs found

    Thermospheric density perturbations in response to substorms

    Get PDF
    We use 5 years (2001–2005) of CHAMP (Challenging Minisatellite Payload) satellite data to study average spatial and temporal mass density perturbations caused by magnetospheric substorms in the thermosphere. Using statistics from 2306 substorms to construct superposed epoch time series, we find that the largest average increase in mass density of about 6% occurs about 90 min after substorm expansion phase onset about 3 h of magnetic local time east of the onset region. Averaged over the entire polar auroral region, a mass density increase of about 4% is observed. Using a simple model to estimate the mass density increase at the satellite altitude, we find that an energy deposition rate of 30 GW applied for half an hour predominantly at an altitude of 110 km is able to produce mass density enhancements of the same magnitude. When taking into account previous work that has shown that 80% of the total energy input is due to Joule heating, i.e., enhanced electric fields, whereas 20% is due to precipitation of mainly electrons, our results suggest that the average substorm deposits about 6 GW in the polar thermosphere through particle precipitation. Our result is in good agreement with simultaneous measurements of the NOAA Polar-orbiting Operational Environmental Satellite (POES) Hemispheric Power Index; however, it is about 1 order of magnitude less than reported previously

    Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)

    Get PDF
    Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR

    Entanglement purification of multi-mode quantum states

    Get PDF
    An iterative random procedure is considered allowing an entanglement purification of a class of multi-mode quantum states. In certain cases, a complete purification may be achieved using only a single signal state preparation. A physical implementation based on beam splitter arrays and non-linear elements is suggested. The influence of loss is analyzed in the example of a purification of entangled N-mode coherent states.Comment: 6 pages, 3 eps-figures, using revtex

    First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground

    Get PDF
    On 5 September 2002 the Geotail satellite observed the cone angle of the Interplanetary Magnetic Field (IMF) change to values below 30° during a 56 min interval between 18:14 and 19:10 UT. This triggered the generation of upstream waves at the bow shock, 13 <I>R<sub>E</sub></I> downstream of the position of Geotail. Upstream generated waves were subsequently observed by Geotail between 18:30 and 18:48 UT, during times the IMF cone angle dropped below values of 10°. At 18:24 UT all four Cluster satellites simultaneously observed a sudden increase in wave power in all three magnetic field components, independent of their position in the dayside magnetosphere. We show that the 10 min delay between the change in IMF direction as observed by Geotail and the increase in wave power observed by Cluster is consistent with the propagation of the IMF change from the Geotail position to the bow shock and the propagation of the generated waves through the bow shock, magnetosheath and magnetosphere towards the position of the Cluster satellites. We go on to show that the wave power recorded by the Cluster satellites in the component containing the poloidal and compressional pulsations was broadband and unstructured; the power in the component containing toroidal oscillations was structured and shows the existence of multi-harmonic Alfvénic continuum waves on field lines. Model predictions of these frequencies fit well with the observations. An increase in wave power associated with the change in IMF direction was also registered by ground based magnetometers which were magnetically conjunct with the Cluster satellites during the event. To the best of our knowledge we present the first simultaneous observations of waves created by backstreaming ions at the bow shock in the solar wind, the dayside magnetosphere and on the ground

    The CORALIE survey for southern extra-solar planets. X. A Hot Jupiter orbiting HD73256

    Full text link
    Recent radial-velocity measurements obtained with the CORALIE spectrograph on the 1.2-m Euler Swiss telescope at La Silla unveil the presence of a new Jovian-mass Hot Jupiter around HD 73256. The 1.85-M_Jup planet moves on an extremely short-period (P=2.5486 d), quasi-circular orbit. The best Keplerian orbital solution is presented together with an unsuccessful photometric planetary-transit search performed with the SAT Danish telescope at La Silla. Over the time span of the observations, the photometric follow-up of the candidate has nevertheless revealed a P=14-d photometric periodicity corresponding to the rotational period of the star. This variation as well as the radial-velocity jitter around the Keplerian solution are shown to be related to the fair activity level known for HD 73256.Comment: 7 pages, 7 figures. Accepted in A&

    A superposed epoch analysis of the regions 1 and 2 Birkeland currents observed by AMPERE during substorms

    Get PDF
    We perform a superposed epoch analysis of the evolution of the Birkeland currents (field-aligned currents) observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during substorms. The study is composed of 2900 substorms provided by the SuperMAG experiment. We find that the current ovals expand and contract over the course of a substorm cycle and that currents increase in magnitude approaching substorm onset and are further enhanced in the expansion phase. Subsequently, we categorize the substorms by their onset latitude, a proxy for the amount of open magnetic flux in the magnetosphere, and find that Birkeland currents are significantly higher throughout the epoch for low-latitude substorms. Our results agree with previous studies which indicate that substorms are more intense and close more open magnetic flux when the amount of open flux is larger at onset. We place these findings in the context of previous work linking dayside and nightside reconnection rate to Birkeland current strengths and locations

    Modulational instability in periodic quadratic nonlinear materials

    Get PDF
    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint

    Heralded quantum entanglement between two crystals

    Full text link
    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.Comment: 10 pages, 5 figure

    The characteristics of railway service disruption: implications for disruption management

    Get PDF
    Rail disruption management is central to operational continuity and customer satisfaction. Disruption is not a unitary phenomenon - it varies by time, cause, location and complexity of coordination. Effective, user-centred technology for rail disruption must reflect this variety. A repertory grid study was conducted to elicit disruption characteristics. Construct elicitation with a group of experts (n=7) captured 26 characteristics relevant to rail disruption. A larger group of operational staff (n=28) rated 10 types of rail incident against the 26 characteristics. The results revealed distinctions such as business impact and public perception, and the importance of management of the disruption over initial detection. There were clear differences between those events that stop the traffic, as opposed to those that only slow the traffic. The results also demonstrate the utility of repertory grid for capturing the characteristics of complex work domains
    corecore