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Modulational Instability in Periodic Quadratic Nonlinear Materials

J. F. Corney and O. Bang
Department of Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

(Received 20 March 2001; published 7 September 2001)

We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear
and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simu-
lations, show that the periodicity can drastically alter the gain spectrum but never completely removes
the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged the-
ory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the
homogeneous non-phase-matched material and is a consistent spectral feature.

DOI: 10.1103/PhysRevLett.87.133901 PACS numbers: 42.65.Tg, 42.65.Jx, 42.65.Ky

The modulational instability (MI) of waveforms is a fun-
damental phenomenon in nonlinear media and is closely
associated with the concept of self-localized waves, or soli-
tons. Similar to solitons, MI occurs due to an interplay
between nonlinear and dispersive or diffractive effects.
It involves the exponential growth of weak perturbations
through the amplification of sideband frequencies, which
causes a destructive modulation of the carrier wave. Many
diverse physical systems exhibit MI, e.g., fluids [1], plas-
mas [2], nonlinear optics [3], molecular chains [4], and
Fermi-resonant interface waves and waveguide arrays [5].
In nonlinear optics MI may appear as a transverse instabil-
ity that breaks up a broad optical beam, thereby acting as a
precursor for the formation of stable bright spatial solitons
[6]. Conversely, the stable propagation of dark solitons re-
lies on the stability of the constant-intensity background
and thus requires the absence of MI [7].

Here we study optical media with a purely quadratic
(x �2�) nonlinearity. These materials are of significant
technological interest due to their strong and fast cas-
caded nonlinearities [8], which can support stable bright
solitons in all dimensions [9]. Moreover, they provide
the most general means of studying nonlinear processes,
because varying the phase mismatch between the fun-
damental and second-harmonic (SH) waves changes the
nonlinearity from being distinctly quadratic to effectively
cubic. The generality is further enhanced when the
properties of the medium are modulated with long-period
quasi-phase-matching (QPM) gratings. This periodicity
not only allows one to tune the effective mismatch, but it
also induces effective cubic nonlinearities [10,11], which
may be engineered to different strengths and signs [12].

Except in special cases, MI is unavoidable in x�2� ma-
terials. Optical pulses can be stable if the dispersion has
opposite sign at the fundamental and SH frequencies [13].
Transverse inhomogeneities, as in x�2� waveguide arrays
[5], and spatial incoherence [14] also eliminate MI. How-
ever, coherent cw beams propagating in pure homogeneous
x�2� materials are always unstable [7]. Naturally, a cubic
(Kerr) nonlinearity is always present in x�2� materials, and,
if defocusing and sufficiently strong, it may eliminate MI
[15]. Unfortunately, the cubic nonlinearity in conventional

x�2� materials is usually focusing, though it may be a fac-
tor in the recent observation of apparently stable quadratic
optical vortex solitons [16].

We consider transverse MI of coherent cw beams in
x�2� materials whose linear and nonlinear properties are
modulated and study the instability gain spectra, which can
now be measured in the laboratory [17]. It is known that,
in a system with cubic nonlinearity, periodic dispersion
[18] (as in dispersion-managed fibers) or nonlinearity [19]
can reduce the growth rate of fluctuations. We find that, in
quadratic materials, the periodicities also drastically alter
the MI gain spectrum but they do not entirely remove the
instability.

We numerically find exact plane-wave solutions and
apply Floquet theory to determine their MI gain spectrum.
Numerical simulations, with exact plane-wave solutions
seeded with noise as initial conditions, confirm the Floquet
gain spectra. In the regime of efficient quasi phase match-
ing, we find that the MI gain spectrum contains two
distinct and well-separated features with fundamentally
different physical origins. The low-frequency part of the
gain is accurately predicted by an averaged theory and
disappears for certain grating modulations. The high-
frequency part of the spectrum is related to the inherent
gain of the non-phase-matched material (i.e., with no grat-
ings) and appears to be unavoidable. However, because
they are consistently small, the high-frequency peaks can
be ignored under a less stringent definition of experimental
stability. This gives the possibility of stable plane waves
as predicted by the averaged theory.

The system under consideration consists of a cw beam
(carrier frequency v) and its SH propagating in a lossless
1D slab waveguide under conditions for QPM type-I
second-harmonic generation (SHG). Both the linear and
quadratic nonlinear susceptibilities are periodic along
the Z direction of propagation, as illustrated in Fig. 1,
but are constant along the transverse X direction. The
modulation of the refractive index is assumed to be weak:
Dnj�Z��n̄j ø 1, where nj�Z� � n̄j 1 Dnj�Z� and j
refers to the frequency jv. For many materials and etch-
ing techniques, such a linear grating appears inevitably
when the nonlinear susceptibility is altered [20]. We
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FIG. 1. Normalized linear and quadratic nonlinear gratings,
aj�Z� and x�Z�, with domain length L0 � p�jkgj.

consider gratings for forward QPM only, such that the
grating period is much longer than the optical period and
we can neglect Bragg reflections. The evolution of the
slowly varying beam envelopes is then given by [21]

i≠ZE1 1
1
2

≠2
XE1 1 a1�Z�E1 1

x�Z�E�
1E2eibZ � 0 ,

i≠ZE2 1
1
4

≠2
XE2 1 2a2�Z�E2 1

(1)

x�Z�E2
1 e2ibZ � 0 ,

where E1 � E1�X, Z� and E2 � E2�X, Z� are the enve-
lope functions of the fundamental and SH, respectively.
The coordinates X and Z are in units of the input beam
width X0 and the diffraction length Ld � k1X2

0 , respec-
tively. The parameter b � DkLd is proportional to the
mismatch Dk � k2 2 2k1, where kj � jvn̄j�c is the
average wave number. The normalized refractive-index
grating is aj�Z� � LdvDnj�Z��c, and the normalized
nonlinear grating is x�Z� � Ldvdeff�Z���n̄1c�, where
deff � x �2��2 is given in SI units.

To consider a plane wave with longitudinal wave number
offset L and transverse wave number V, we transform to
the new variables w�x, z� � E1�X, Z� exp�iVX 2 iLZ�,
y�x, z� � E2�X, Z� exp�2iVX 2 2iLZ 1 ib̃Z�, x �
p

h �X 1 VZ�, and z � hZ, where h � jL 1 1
2V2j

for L fi 2
1
2 V2 and h � 1 otherwise. We have also

introduced a residual effective mismatch b̃ � b 2 kg.
This gives the equations

i≠zw 1
1
2

≠2
xw 2 rw 1 a0

1�z�w 1

x 0�z�w�yeikz � 0 ,

i≠zy 1
1
4

≠2
xy 2 sy 1 2a0

2�z�y 1
(2)

x 0�z�w2e2ikz � 0 ,

where r � sgn�L 1
1
2V2�, s � 2r 2 b̃�h, and k �

kg�h. Note that r � 0 when L � 2
1
2V2. We Fourier ex-

pand the rescaled gratings, a
0
j�z� � aj�Z��h and x 0�z� �

x�Z��h:

a0
j � a0

j

X
n

gneinkz, x 0 � d0
0 1 d0

X
n

gneinkz, (3)

where, for the square waveform that we consider (Fig. 1),
gn � 2s��ipn� for n odd and gn � 0 for n even. The sign
s � sgn�k� is included to ensure that the expansions give
the same grating form for both signs of k. The gratings
will drive a periodic variation in z of spatial frequency k
in the fields of system (2). We explicitly include this fast
variation by expanding the fields in the Fourier series also:

w �
X
n

wn�x,z�einkz , y �
X
n

yn�x, z�einkz. (4)

For plane-wave solutions �w, y� � �ws, ys�, all the coeffi-
cients wn and yn are constants determined by

2�nk 1 r�wn 1 a0
1

X
l

gn2lwl 1

X
l,p

Dn1l2p21w�
l yp � 0 ,

2�nk 1 s�yn 1 2a0
2

X
l

gn2lyl 1

X
l,p

Dn2l2p11wlwp � 0 ,

where Dn � d0gn 1 d0
0dn, dn being Kronecker’s delta.

We find the solution numerically using a standard relax-
ation technique based on Newton’s method.

We determine the linear stability of the plane-wave solu-
tions by using exact Floquet theory [6]. For perturbations
of transverse frequency offset n:

w�x, z� � ws�z� 1 dw1�z�e2inx 1 dw�
2 �z�einx,

y�x, z� � ys�z� 1 dy1�z�e2inx 1 dy�
2 �z�einx,

(5)

the linear growth is governed by the linearized equation
≠zP � M�z�P, where P�z� and the matrix M�z� are

P �

0
BBB@

dw1

dw2
dy1
dy2

1
CCCA, M � i

0
BBB@

a b c� 0
2b� 2a 0 2c
2c 0 d 0
0 22c� 0 2d

1
CCCA ,

(6)

and where we have defined the components a � 2n2�2 2

r 1 a
0
1�z�, b � ys�z�x�z�eikz, c � ws�z�x�z�e2ikz, and

d � 2n2�4 2 s 1 2a
0
2�z�.

Because of the periodicity in a
0
j , x 0, ws, and ys, the

matrix M is also periodic with period zp � 2p�jkj. To
determine the stability, we need only find the eigenvalues
li of the mapping dT of the solution over one period:
P�z 1 zp� � dTP�z�. We calculate dT numerically by
integrating the linearized equation [6] with a fourth-order
Runge-Kutta method. If all the li lie on the unit circle for
every n, then the solutions ws and ys are stable; otherwise
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there is a gain whose profile is g � max�Re�ln�li��zp��.
We note that the actual growth rate at short distances may
differ from g, depending on the overlap of the initial per-
turbation with the unstable eigenvector [22]. However,
for larger distances (z . 1�g), as we consider here, the
growth rate will approach the limiting maximum value g.

As a first example, we calculate the Floquet gain
spectrum for a conventional domain-reversal grating in
LiNbO3 (a0

1 � a0
2 � d0

0 � 0) for r � 21, k � 100, and
exact phase matching (s � 22). As Fig. 2(a) shows, the
spectral features fall into two well-separated regions: two
low-frequency bands around n � 2.0 and n � 3.4, and a
narrow high-frequency band at n � 14.2. For comparison
Fig. 2(b) plots the gain for a GaAs�AlAs superstructure
with a nonlinear grating etched though quantum-well
disordering [23] (d0

0�d0 � 4.6) and a linear grating chosen
to be �a0

1 2 a0
2��k � 21�9.2. High-frequency gain

bands are again present, but the low-frequency bands are
absent. Further results show that such narrow, high-n
bands are a general feature of the gain spectrum for
QPM gratings. They are related to the inherent MI in the
non-phase-matched, gratingless x �2� material: Each gain
peak that appears in the gratingless spectrum usually also
appears in the Floquet spectrum, typically with the same
height and spectral location [Fig. 2(d)]. An exception is
the gain from the symmetric grating case (d0

0 � 0), as
in LiNbO3, where the original “homogeneous” peak is
suppressed. Often, as in Fig. 2(b), this peak is split into
two or more closely spaced components by the grating.

The low-frequency features in the gain spectrum are
accurately predicted by approximate averaged-field equa-
tions for the dc components �w̄, ȳ� � �w0, y0�. From

FIG. 2. Floquet gain spectra for (a) the LiNbO3 and (b) the
GaAs�AlAs gratings, for s � 22. The diamonds give the
averaged-field results in (c) and the equivalent non-phase-
matched homogeneous results in (d).

Eqs. (2) these equations are [10,11]

i≠zw̄ 1
1
2

≠2
xw̄ 2 rw̄ 1 rw̄�ȳ 1

g�jȳj2 2 jw̄j2�w̄ � 0 ,

i≠z ȳ 1
1
4

≠2
xȳ 2 sȳ 1 r�w̄2 1

(7)

2gjw̄j2ȳ � 0 ,

where r � 2is�d0 1 2d0
0�a0

1 2 a0
2��k��p and g � �d02

0 1

d02�1 2 8�p2���k. The averaged equations are valid for
small residual mismatch (b̃ ø b) and small grating pe-
riod (k ¿ 1). They show that the linear grating may
decrease the strength of the effective quadratic nonlinear-
ity, possibly even to zero [11,20]. More importantly, the
nonlinear grating induces cubic nonlinearities. These can
be defocusing (g . 0) [11] and may thus stabilize plane
waves [15]. We find that Eqs. (7) indeed have modula-
tionally stable plane-wave solutions in a large regime for
r � 21, as shown in Fig. 3(a), where g̃ � g�jrj2 gives
the relative strength of the cubic nonlinearity. The fig-
ure also shows that, since the mismatch s cannot be large
(otherwise the averaged equations are invalid), the effec-
tive quadratic nonlinearity jrj must be reduced (i.e., g̃

increased) to get a stable solution.
The case shown in Fig. 2(a) corresponds to having g̃ �

44.5, s � 22, which lies outside the region of stability
predicted by the averaged equations. The gain profile,
shown in Fig. 2(c), matches exactly the low-frequency part
of the Floquet spectrum. The case in Fig. 2(b) corresponds
to r � 0, in which case the averaged equations reduce to
two coupled nonlinear Schrödinger equations. The plane-
wave solution w0 �

p
2r�g, y0 � 0 is stable for g . 0

(r � 21), in agreement with the absence of low-frequency
bands in the exact Floquet spectrum.

Figure 3(b) shows the maximum gain calculated from
Floquet theory for a given modulation depth. Where the
averaged equations predict MI, the Floquet gain is large, in
agreement with the averaged results. However where the
averaged equations predict stability, Floquet theory finds
a residual gain, due to the high-frequency gain bands.
However, because the residual gain is often small and
narrow, it may be neglected under a reasonable definition

0 2 4 6 8 10
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Stable

Unstable

~
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0.511.5
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10
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(b)
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FIG. 3. (a) Region of MI predicted by the averaged-field the-
ory with r � 21 and r fi 0. (b) Maximum gain predicted by
Floquet theory for 5 # k # 30, with d0

0�d0 � 5�3 and �a0
1 2

a0
2��k � 0.158. The region of zero gain predicted by averaged-

field theory is shaded.
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of experimental stability, which allows for a small growth
over typical length scales in experiments. Neglecting the
high-frequency gain bands causes the results of Floquet
and average-field calculations to coincide and whole
regions in parameter space of “experimentally stable”
plane waves to appear. These regions are even larger than
shown in Fig. 3 and also appear for r � 11 and r � 0.
We demonstrate this experimental stability by simulating
the propagation of dark solitons with Eq. (1), shown
in Fig. 4(a). The parameters correspond to a nonlinear
grating induced in GaAs�AlAs through quantum-well
disordering [23], as in Fig. 2(b) but with no linear modu-
lation. Stable propagation of the dark soliton can be seen
for over 60 diffraction lengths. Now because of the small
gain in highly non-phase-matched materials, such stable
propagation can also be achieved without the nonlinear
grating [Fig. 4(b)]. But the SHG efficiency is then very
low, as evidenced by the relative SH intensity (not shown)
being a factor of 10 less than with the grating.

The Floquet spectral results are confirmed by numeri-
cal simulations of Eqs. (1). We launch plane waves
seeded with Gaussian white noise to excite all spa-
tial frequencies. The gain spectrum is then calculated
from the Fourier-transformed fundamental w̃ as g̃�n� �
�lnjw̃�z2, n�j 2 lnjw̃�z1, n�j���z2 2 z1� [24]. As shown
in Fig. 5, the simulations agree with the Floquet curves,
in both the low-n [Fig. 5(b)] and the high-n [Fig. 5(c)]
regions.

FIG. 5. (a) Gain profile calculated from propagative simula-
tions, for the same parameters as in Fig. 2(a). Comparisons
with the Floquet theory (solid curve) are given in (b) and (c).

In summary, we have used an exact Floquet technique
to find the MI gain spectrum in x�2� materials with
general QPM gratings. Because of the periodicity, novel
high- and low-frequency gain bands appear in the
spectrum. A simple approximate averaged-field theory
correctly predicts the low-frequency gain bands. The high-
frequency peaks that are consistently present in the spec-
trum are typically small and may be neglected under a
realistic definition of experimental stability. The predic-
tions of the averaged and the exact Floquet analyses then
agree, and stable plane waves and dark solitons become
possible, even under conditions close to phase matching.
Because it is now possible to directly probe the gain
spectrum in experiments [17], these interesting spectral
profiles may be verified in the laboratory.
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