20 research outputs found

    Drivers of site fidelity in ungulates

    Get PDF
    1. While the tendency to return to previously visited locations—termed ‘site fidelity’—is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals’ recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. 2. We compared inter‐year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance‐based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. 3. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren‐ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a ‘win‐stay, lose‐switch’ strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. 4. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter‐annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species‐specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. 5. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change

    STRIDER (Sildenafil TheRapy in dismal prognosis early onset fetal growth restriction): An international consortium of randomised placebo-controlled trials

    Get PDF
    Background: Severe, early-onset fetal growth restriction due to placental insufficiency is associated with a high risk of perinatal mortality and morbidity with long-lasting sequelae. Placental insufficiency is the result of abnormal formation and function of the placenta with inadequate remodelling of the maternal spiral arteries. There is currently no effective therapy available. Some evidence suggests sildenafil citrate may improve uteroplacental blood flow, fetal growth, and meaningful infant outcomes. The objective of the Sildenafil TheRapy In Dismal prognosis Early onset fetal growth Restriction (STRIDER) collaboration is to evaluate the effectiveness of sildenafil versus placebo in achieving healthy perinatal survival through the conduct of randomised clinical trials and systematic review including individual patient data meta-analysis.  Methods: Five national/bi-national multicentre randomised placebo-controlled trials have been launched. Women with a singleton pregnancy between 18 and 30 weeks with severe fetal growth restriction of likely placental origin, and where the likelihood of perinatal death/severe morbidity is estimated to be significant are included. Participants will receive either sildenafil 25 mg or matching placebo tablets orally three times daily from recruitment to 32 weeks gestation.  Discussion: The STRIDER trials were conceived and designed through international collaboration. Although the individual trials have different primary outcomes for reasons of sample size and feasibility, all trials will collect a standard set of outcomes including survival without severe neonatal morbidity at time of hospital discharge. This is a summary of all the STRIDER trial protocols and provides an example of a prospectively planned international clinical research collaboration. All five individual trials will contribute to a pre-planned systematic review of the topic including individual patient data meta-analysis

    Data from: Migratory plasticity is not ubiquitous among large herbivores

    No full text
    1. The migratory movements of wild animals can promote abundance and support ecosystem functioning. For large herbivores, mounting evidence suggests that migratory behavior is an individually variable trait, where individuals can easily switch between migrant and resident tactics. The degree of migratory plasticity, including whether and where to migrate, has important implications for the ecology and conservation of large herbivores in a changing world. 2. Mule deer (Odocoileus hemionus) are an iconic species of western North America, but are notably absent from the body of literature that suggests large herbivore migrations are highly plastic. We evaluated plasticity of migration in female mule deer using longitudinal GPS data collected from 312 individuals across 9 populations in the western US, including 882 animal-years (801 migrants and 81 residents). 3. We followed both resident and migratory mule deer through time to determine if individual animals switched migratory behaviors (i.e., whether to migrate) from migratory to residency, or vice versa. Additionally, we examined the fidelity of individuals to their migration routes (i.e., where to migrate) to determine if they used the same routes year after year. We also evaluated if age and reproductive status affected propensity to migrate or fidelity to migratory routes. 4. Our results indicate that mule deer, unlike other large herbivores, have little or no plasticity in terms of whether or where they migrate. Resident deer remained residents, and migrant deer remained migrants, regardless of age, reproductive status, or number of years monitored. Further, migratory individuals showed strong fidelity (>80%) to their migration routes year after year. 5. Our study clearly shows that migration plasticity is not ubiquitous among large herbivores. Because of their rigid migratory behavior, mule deer may not adapt to changing environmental conditions as readily as large herbivores with more plastic migratory behavior (e.g., elk). The fixed migratory behaviors of mule deer make clear that conservation efforts aimed at traditional seasonal ranges and migration routes are warranted for sustaining this iconic species that continues to decline across its range

    Data from: The greenscape shapes surfing of resource waves in a large migratory herbivore

    No full text
    The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration

    Drivers of site fidelity in ungulates

    No full text
    1. While the tendency to return to previously visited locations - termed 'site fidelity' - is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity.2. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS-collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size.3. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested.4. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour.5. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.publishe

    Wave-like patterns of plant phenology determine ungulate movement tactics

    Get PDF
    Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called ‘‘green-wave surfing’’ [3–5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of greenup facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology
    corecore