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SUMMARY
Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is
predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e.,
hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called
‘‘green-wave surfing’’ [3–5]. Yet general principles describing how the dynamic nature of resources deter-
mine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence
of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially
across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-
up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungu-
late species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent
between tactics, suggesting that eachmovement tactic is fine-tuned to local patterns of plant phenology. For
decades, ecologists have sought to understand how animals move to select habitat, commonly defining
habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a func-
tion of the flux of resources across space and time, underscoring the need to redefine habitat to include its
dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate
change [10], our synthesis provides a generalizable framework to understand how animal movement will
be influenced by altered patterns of resource phenology.
RESULTS AND DISCUSSION

Animals exhibit a wide diversity of movement behaviors. Some

animals live year-round within a restricted area, whereas others

traverse the entire planet [1]. Although animals move to find
resources, general principles describing how movement tactics

are shaped by the dynamic nature of resources have yet to be

clearly defined and tested. For ungulates, newly emergent plants

(hereafter green-up) provide the highest-quality forage, but

green-up is only available at any one location for a narrow
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window of time [11]. ‘‘Green-wave surfing,’’ or tracking plant

green-up that sweeps across the landscape, is thought to be a

key driver of ungulate migration [3, 12] and a precursor to the

development of migratory behavior [12]. Not all migratory ungu-

lates surf the green wave [13], however, highlighting a key gap in

our understanding of how resource dynamics shape migratory

movements.

According to the Greenscape Hypothesis, the way green-up

propagates across a landscape should determine where surfing

is adaptive [7]. Although there are many ways to conceptualize

resource dynamics across space and time, the Greenscape Hy-

pothesis characterizes the wave-like nature of resources using

the rate, order, and duration of green-up [7]. Accordingly, surfing

is predicted to be favored in wave-like environments, where

green-up is fleeting locally but progresses sequentially across

large areas (i.e., rapid rate, sequential order, and long duration

of green-up [7]). By contrast, the need to move and seek out re-

sources should be diminished in landscapes where green-up is

prolonged (i.e., a gradual rate of green-up).We tested the predic-

tions of the Greenscape Hypothesis to examine how global vari-

ation in patterns of plant phenology (i.e., greenscapes) shape

surfing. We compiled a cross-continental dataset of 1,696

GPS-collared individuals from 61 populations (with various pro-

portions of migrants and residents) across four ungulate species

(roe deer [Capreolus capreolus] and red deer [Cervus elaphus] in

Europe, and mule deer [Odocoileus hemionus] and elk [Cervus

canadensis] in North America; Figure 1). We quantified green-

wave surfing behavior as the absolute difference in days be-

tween the date of peak green-up and the date the animal used

a location (hereafter Days-From-Peak, 0 = perfect surfing [7]).

In support of the Greenscape Hypothesis, animals surfed closer
2 Current Biology 30, 1–6, September 7, 2020
to the date of peak green-up when green-up occurred in a wave-

like pattern, characterized as rapid green-up rate, consecutive

green-up order, and long green-up duration (Figure 2). The

robust and general support for the Greenscape Hypothesis indi-

cates that surfing the green wave is an adaptation to enhance

foraging in environments with fleeting green-up that moves like

a wave across northern temperate regions of the globe.

Because green-wave surfing leads to migration [12], wave-like

greenscapes may predict the landscapes where migration

should be a common movement tactic. Thus, we extended the

Greenscape Hypothesis to evaluate whether green-up dynamics

determine if animals exhibit a migratory or resident tactic. We

classifiedmovement tactics of individuals asmigratory, resident,

or other [14] and compared the greenscapes available to individ-

uals across populations with different proportions of migrants

and residents. At the individual level, migrants occupied land-

scapes with an average of 21%–27% more rapid rates of

green-up (range represents species-specific averages; Figures

S1A–S1D) and 21%–35% more consecutive green-up order

than residents (Figures S1E–S1H). At the population level, as

the phenology of a landscape became more wave-like (i.e.,

green-up wasmore rapid and ordered), the proportion of individ-

uals exhibiting a migratory strategy increased (Figure 3). Addi-

tionally, the proportion of migrants and residents within a popu-

lation was strongly controlled by the wave-like pattern of plant

phenology, with partial migration (i.e., when individuals from

the same population exhibit different movement tactics) being

favored in landscapes with intermediate greenscape attributes

(Figure 3). Although movement is shaped by a myriad of factors

(e.g., conspecific density and environmental variability [15]), our

results indicate that a composite attribute of habitat—the wave-
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Figure 1. Geographic Location of Study Populations

Each dot represents the centroid of the GPS locations from a population. North American elk are represented as blue circles (n = 903 individuals, 30 populations),

mule deer as orange squares (n = 422 individuals, 13 populations), red deer as green circles (n = 176 individuals, 10 populations), and roe deer as yellow diamonds

(n = 195 individuals, 8 populations). Cartography by University of Oregon InfoGraphics Lab. See also Table S1.
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like nature of foraging resources—determines whether migration

or residency is favored for ungulates in northern temperate eco-

systems. These findings provide support for a general principle

whereby animal movement tactics are fine-tuned to the pace

and pattern of ephemeral foraging resources.

Animals are expected toderive foragingbenefits from themove-

ment tactics theyemploy. Ifmovement tactics are adaptive, the re-

sulting foragingbenefitsofdifferent tacticsshouldbebroadlycom-

parable across different populations and ecosystems [15]. To

examine the consequences of different movement tactics, we

compared how well animals aligned their movements with the

green wave (i.e., surfing behavior, Days-From-Peak) and the
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resulting foraging benefit of surfing between migrants and resi-

dents within each species. To characterize the potential foraging

benefit of surfing, we calculated the Instantaneous Rate of

Green-up (IRG), which incorporates both the rate of green-up

and date of peak green-up, to estimate exposure to green-up

[13]. At the species level, migrants consistently surfed closer to

the date of peak green-up than residents (Figure 4A). However,

moving in sync with the green wave did not translate to greater

exposure to spring green-up compared with residents, a pattern

thatwas consistent across all four species (Figure 4B). Despite dif-

ferences in surfing, migrants and residents had equivalent expo-

sure to spring green-up, presumably because residents inhabited
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dered (B). Specifically, odds of having a

completely migratory herd increased 330-fold

from an environment with no wave (i.e., order = 0)

to an environment with an idealized wave (order =

1). Likewise, odds of the herd being completely

migratory decreased 137-fold when comparing

environments with the most ephemeral green-up

to the most prolonged green-up. Green-up rate
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landscapeswith lesswave-like green-up (Figure 3). The equivalent

exposure to springgreen-upbetweenmigrants and residents indi-

cates that individuals exhibitmovement tactics that are adapted to

the underlying resource dynamics they experience, allowing them

to derive similar foraging benefits across different landscapes.
A B

Figure 4. A Comparison of Green-Wave Surfing and Exposure to

Spring Green-Up between Migrants and Residents

(A) Migrants surfed better across all four species, as measured by Days-From-

Peak, where zero (black dashed line) represents a perfect match between the

date of peak green-up and the date of animal use.

(B) Despite not surfing as well, residents obtained equivalent exposure to spring

green-up, as measured by the Instantaneous Rate of Green-up (IRG). An IRG

value of one (black dashed line) represents the maximum possible exposure to

spring green-up and the greatest foraging benefit. Black dots represent the

median and transparent gray lines represent the interquartile range.

See also Figure S3 and Table S3.
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For nearly a century, ecologists have sought to understand how

animals select habitat [16]. In early work, habitat was often viewed

as a set of static resource patches (e.g., [8, 17]), with relatively little

attention paid to how animals cope with resources that change

across space and time (but see [18, 19]). Nevertheless, phenolog-

ical diversity is intrinsic to natural foodwebs and controls the tem-

poral availability of key food resources for consumers as diverse

as bluewhales (Balaenopteramusculus) and figwasps (superfam-

ily Chalcidoidea [2, 20, 21]). The technological revolution in animal

tracking and remote sensing [22] has resulted in a proliferation of

case studies quantifying how animals move in response to dy-

namic environments (e.g., [2, 23]). While movement ecology has

developed increasingly powerful means to quantify and recon-

struct the movement paths of animals [6, 24], our study advances

the field by connecting animal movement paths explicitly to the

underlying resource dynamics that animals experience (also see

[25, 26]). We find that green-wave surfing leads to the emergence

of migratory behavior, with both behaviors being most adaptive in

environments with wave-like spring green-up. Importantly, migra-

tion is not always superior to residency in terms of forage acquisi-

tion [27], but rather the way forage resources progress (or not)

across the landscape determines the movement tactics that are

adaptive on a given landscape.

Long-distance animal movements are being lost or truncated

across the globe [10]. Loss of migratory behavior can result from

barriers that prevent migrants from freely moving across large

landscapes [28]. Our results indicate that migrations can also

be lost when changes in the underlying resource landscape elim-

inate the need to migrate over long distances. For example,

shortened migrations or increased residency have been caused

by food subsidies (e.g., agriculture, landfills [29]) and climate-

induced shifts in phenology or resource distribution [30], which

can alter or eliminate the progression of green waves across

the landscape. Thus, some shifts in movement may be adaptive

in a changing world, whereas others—those caused by barriers

to movement—might be an early warning signal of future popu-

lation decline. Indeed, we found that greater exposure to anthro-

pogenic disturbance resulted in poorer surfing, even after taking

into account differences in the greenscape (Figure S4A), sug-

gesting that green-wave surfing is already threatened or altered
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in many systems. Characterizing wave-like greenscapes where

migration is required will allow ecologists to identify landscapes

where migration must be conserved. Such movement behaviors

often must be socially learned, and thus population declines

represent not only the loss of individuals, but also the loss of

fine-tuned behaviors that have developed over generations

through cultural evolution [12]. As landscapes become increas-

ingly altered by climate change and anthropogenic develop-

ment, identifying movement tactics that should be profitable

but have been lost or altered will be critical to the conservation

of animal movement and the ecological processes it sustains.
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STARMETHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

2009 Human Footprint Index [31] https://doi.org/10.5061/

dryad.052q5

MOD09Q1 v006 surface

reflectance data

[32] https://doi.org/10.5067/

MODIS/MOD09Q1.006

Experimental Models: Organisms/Strains

Elk (Cervus canadensis) See Table S1 See Table S1

Mule deer (Odocoileus

hemionus)

See Table S1 See Table S1

Red deer (Cervus elaphus) See Table S1 See Table S1

Roe deer (Capreolus

capreolus)

See Table S1 See Table S1

Software and Algorithms

R 3.6.3 [33] http://www.r-project.org/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Ellen Aikens (ellen.

aikens@gmail.com).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The gps-collar data supporting the current study have not been deposited in a public repository because these are part of further

investigation, but data and code is available from the corresponding author on request. MODIS data is publicly available through

the NASA Earthdata database (https://earthdata.nasa.gov/). The Human Footprint Index data is available at https://doi.org/10.

5061/dryad.052q5.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We compiled relocation data fromGPS collared mule deer (Odocoileus hemionus) and elk (Cervus canadensis) in North America, and

roe deer (Capreolus capreolus) and red deer (Cervus elaphus) in Europe. We only included adult (> 1-year-old) individuals within a

given year with at least one relocation per day over the 120-day spring period (see below for details). Populations were only included

in the analysis if there was a minimum of ten individuals in the population. These criteria resulted in a total of 2,446 animal-years

derived from 1,696 unique individuals and 61 populations. Details of each population can be found in Table S1.

METHOD DETAILS

The greenscape and green-wave surfing
We quantified forage quality using remotely sensed data. We calculated the Normalized Difference Vegetation Index (NDVI [34]) from

bands 1 and 2 of MOD09Q1 v006 surface reflectance data (250-m spatial resolution, 8-day temporal resolution). We cleaned and

filtered the NDVI data as described by Bischof et al. [13], except that we used the snow flag for the MOD09Q1 data to floor values

during winter rather than using a fixed window [3]. For each pixel in each of the 61 study areas, we fit a double logistic curve to the

annual time series of the processed NDVI data. To pinpoint the date of peak green-up, we took the first derivative of the double lo-

gistic curve, resulting in a curve of the Instantaneous Rate of Green-up (IRG [13]) that peaks on the day when NDVI increases most

rapidly. Furthermore, we also used the spring scale parameter, which is estimated when fitting the double logistic curve to the annual

time series of NDVI [13]. Specifically, the spring scale measures the time it takes (in days) for the logistic curve to change from the

midpoint (date of peak IRG) to 3/4 of the asymptote ([35], p 274). We used the date of peak green-up and the spring scale parameters

to calculate greenscape metrics, green-wave surfing, and exposure to spring green-up.
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To characterize the greenscape, we quantified the key components of the green wave (i.e., duration, order, and rate of green-up)

for each animal-year. To convert the spring scale parameter to a rate, we took the inverse. Then, we calculated the mean green-up

rate of all used points during an animal-year as our metric of green-up rate. To calculate green-up duration, we took the difference

between the 0.975 and 0.025 quantiles of the date of peak green-up extracted from all used points for each animal-year. This esti-

mates the amount of heterogeneity in peak green-up across the landscape used by the animal. To calculate order, we used semi-

variograms to measure half of the squared difference in the date of peak green-up across pairs of locations at different spatial scales

(i.e., the semivariance [12, 36]). A perfect resource wave exhibits progressively later dates of peak green-up at increasingly larger

distance lags, resulting in an increasing steepness in semivariance at greater distance lags (Figures S2A and S2B). In most land-

scapes, however, the resource wave truncates and the steepness in the corresponding semivariogram either decreases (Figures

S2C and S2D) or reaches an asymptote. Thus, the shape of the semivariogram quantifies the wave-like nature of green-up, with a

concave up increase representing an idealized resource wave and a concave down curve representing a truncated resource

wave. For the year-round range of each animal, we modeled semivariance as a function of the distance lag raised to an estimated

power. A power greater than one represents an increasing steepness in semivariance, or an idealized wave, whereas a power less

than one represents a decreasing steepness in semivariance at larger distance lags (Figure S2). We used the estimated power as our

measure of green-up order, with values above one indicating more consecutive green-up order and values below one representing

less consecutive green-up order.

We estimated green-wave surfing and exposure to green-up across an equal number of days during the ‘‘spring period,’’ calcu-

lated as a 120-day period centered on the median date of peak green-up for all used relocations for a given animal-year. We used a

fixed 120-day period to represent a consistent window of time across which we evaluated green-wave surfing each spring.We quan-

tified green-wave surfing using the metric Days-From-Peak (0 = perfect surfing), calculated as the absolute difference in days be-

tween the date of peak green-up and the day the animal used a location during the spring period [7]. We used the absolute value

to calculate Days-From-Peak to prevent potential bias from early surfing (i.e., positive values) cancelling out late surfing (i.e., negative

values) [7]. To evaluate the difference in exposure to spring green-up, we calculated IRG for migrants and residents (see below for

details of how this classification was determined). For each relocation during the spring period, we extracted the corresponding IRG

value on the day the animal used that location [13]. An IRG value of one represents the maximum exposure to spring green-up

because IRG is scaled between zero and one [13]. To correct for unbalanced sample size because of different GPS-collar sampling

schedules, we calculated the averageDays-From-Peak and IRG values for each day, and then took the average value across the 120-

day period for each animal-year [7].

Validating Days-From-Peak to quantify green-wave surfing
Recent work has articulated concern over a potential confounding bias in green-wave surfing analyses [37]. Specifically, there is

concern that animals may be moving in sync with a cue that is collinear with spring green-up (e.g., temperature or photoperiod),

thus giving a false positive for green-wave surfing [37]. One option to test for the influence of confounding factors is stochastic sim-

ulations, in which movement paths of individuals are simulated and used to quantify a baseline in green-wave surfing that the animal

might experience if theymoved along their migration paths in the absence of a behavioral response to the greenwave [7, 20]. If green-

wave surfing is identified in both the simulated paths and the actual movement data, then it is concluded that animals are not truly

surfing the green wave [37].

Although it is commendable to try to correct for potential confounding factors, there are several drawbacks associated with the

stochastic simulation method. First, the simulated paths are parameterized using the movement characteristics of the animals

(e.g., directionality, step length, turning angle). Thus, the likelihood of false negatives refuting the existence of true surfing increases

as simulated movements more closely reflect an animal’s actual movements. Additionally, under this framework, migratory move-

ments are dichotomized as either surfing or not surfing; dichotomized outcomes aremore likely to suffer from type I and type II errors.

Because prior work has revealed considerable individual variability in green-wave surfing [7], we decided not to dichotomize the

classification of surfers and non-surfers, but rather to estimate green-wave surfing asDays-From-Peak, which is a continuousmetric.

To validate that our use of Days-From-Peak was an unbiased measure of surfing, we compared our results to an additional metric

called the ‘‘gradient tracking performance’’ [38]. Gradient tracking performancewas calculated as the exposure to the resource being

tracked (in our case the IRG), divided by a null performance metric [38]. We calculated null performance as the temporal average of

IRG for each used location during the spring, which equates to the IRG an animal would experience if it used the same locations but at

a different sequence in time. A tracking performance value of one represents surfing no better than random movements, while any

value greater than one represents surfing [38].

Days-From-Peak was correlated strongly with gradient tracking performance (Pearson’s correlation coefficient =�0.89), suggest-

ing that Days-From-Peak and gradient tracking performance are nearly redundant metrics. Additionally, we estimated the gradient

tracking performance of migrants and residents as a validation of our approach to use Days-From-Peak. Similar to our result

comparing Days-From-Peak betweenmigrants and residents, 95%ofmigrants surfed better than random (i.e., gradient tracking per-

formance > 1), whereas 69% of residents surfed better than random. On average, migrants had a gradient tracking performance that

was greater than residents (mean ± SE; migrants = 1.61 ± 0.0073; resident = 1.06 ± 0.0050). There was no relationship, however,

between IRG and gradient tracking performance (Pearson’s correlation coefficient = 0.051). Thus, we decided to use only Days-

From-Peak in our main analysis because it is an established method used to quantify green-wave surfing [7].
e2 Current Biology 30, 1–6.e1–e4, September 7, 2020



ll

Please cite this article in press as: Aikens et al., Wave-like Patterns of Plant Phenology Determine Ungulate Movement Tactics, Current Biology (2020),
https://doi.org/10.1016/j.cub.2020.06.032

Report
Classifying movement behavior
We used a semi-automated process to classify individual movements as migratory, resident or other [13]. We first calculated the Net-

Squared Displacement (NSD) as the squared Euclidian distance between the first GPS location of an animal-year and subsequent

locations for the entire year. The NSD plotted through time can be used to identify different patterns in movement [14]. For example,

an NSDprofile which resembles a double logistic curve is often interpreted as seasonal migration, defined asmovement between two

distinct seasonal ranges. Next, we used the method of Bunnefeld et al. [14] to classify each animal’s movement tactic within a given

year as ‘‘migratory,’’ ‘‘resident’’ or ‘‘other,’’ based on AIC ranking [14]. For each animal-year, we visually inspected the NSD curve,

andwhen necessary refit the logistic functions separately for the spring and fall migration, following themethods of Bischof et al. [13].

This allowed the asymptote of the spring and fall migration to differ, which improved the identification of the start and end of migration

events when the summer range shifted throughout the season [13]. All visual inspections and modifications of the automated clas-

sifications were performed by a single researcher (EOA) to reduce the potential of introducing bias across different observers.

We dichotomized animals as either migrants or residents to compare the foraging benefit of utilizing different movement behaviors.

Dichotomizing animal movement, however, is controversial and often not straight-forward [39]. To explore the impact of dichoto-

mizing movement behaviors, we also compared exposure to spring green-up (IRG) and surfing behavior (Days-From-Peak) across

a continuous metric of space-use. We defined space-use as the number of unique NDVI pixels (250 m2) an animal used during the

year. We examined differences in green-wave surfing and exposure to spring green-up using a linear mixed-effects model with a

random intercept for species, year and population. Before we performed regression analyses that examined the relationship between

space-use and green-wave surfing, we used a square root transformation on the space-use metric to meet normality assumptions.

Like the dichotomized result (Figure 4), animals that moved across vast landscapes surfed two times closer to the date of peak green-

up (Figure S3A) but did not experience greater exposure to spring green-up compared to animals that exhibited restricted space-use

(Figure S3B). Thus, the key finding that animal movements are fine-tuned to the resource landscape hold whether movement

behavior is dichotomized or quantified across a continuous spectrum.

QUANTIFICATION AND STATISTICAL ANALYSIS

Testing the Greenscape Hypothesis
To test the Greenscape Hypothesis, we quantified the influence of greenscapemetrics on green-wave surfing (i.e., Days-From-Peak)

using a linear mixed-effects model with a random intercept for species, year, and population. We compared the effect size of each

greenscape metric using standardized coefficient estimates to control for differences in the range of values across each metric [40].

We calculated 95% confidence intervals for predicted values of the linear mixed-effects models using parametric bootstrapping with

1000 simulations [41]. To compare how well migrants and residents surf and the resulting foraging benefit of each movement tactic,

we calculated the median Days-From-Peak and IRG of migrants and residents within each species.

We examined the potential confounding effect of human development and productivity on our test of the Greenscape Hypothesis.

We compared the coefficient estimates of the original models and models that included the 2009 Human Footprint Index [31] to ac-

count for human development, or integrated NDVI to account for productivity. Human development or productivity had no effect on

the test of the Greenscape Hypothesis or the examination of the effect of space-use on green-wave surfing (Figure S4).

We also examined the potentially confounding effect of an overrepresentation of elk in our dataset and found no evidence that this

biased our inference. Specifically, our GPS collar dataset contains two potential drawbacks that could bias our inference. First, some

animals were collared for more than one year resulting in temporal pseudoreplication for 31%of the animal-years in the dataset. Sec-

ond, elk were overrepresented in the dataset, composing 62% of the animal-years of data, with data from Wyoming elk composing

55%of all elk animal-years and 30% of all animal-years. To determine the degree to which these drawbacks influenced the inference

drawn from our analysis, we subset the dataset by 1) randomly selecting one animal-year for any individual that was monitored for

greater than one year, and 2) randomly selecting only three out of the 20 elk populations from Wyoming so that the number of pop-

ulations for each species was evenly represented. We repeated the subsampling 100 times and conducted the greenscape analysis

and the green-wave surfing analysis on each of the subsampled datasets. We compared the mean and 95% CIs for the coefficient

estimates derived from the tests of the Greenscape Hypothesis and the influence of space-use on green-wave surfing for the 100

subsampled datasets to the coefficient estimates of the full dataset. In all instances, the 95% CI for the subsampled datasets over-

lapped with the original estimates of the intercepts or slopes for both the greenscape model and the model examining the impact of

space-use on green-wave surfing (Table S2). We compared themedian Days-From-Peak and IRG for migrants and residents of each

species from the full dataset to that of the subsampled datasets. In all instances, the median of interquartile range of the 100 sub-

sampled datasets always included the median value from the full dataset (Table S3). Together, these findings suggest that temporal

pseudoreplication and overrepresentation of elk from Wyoming are an unlikely source of bias in our analysis.

Comparing greenscapes across movement tactics
To examine the impact of the greenscape on individual movement tactics, we quantified the greenscape that was available to each

animal instead of the greenscape derived from its used points. We focused on the available greenscape because the movement

behavior an individual adopts may influence the greenscape that is observed in the used locations. For example, in an environment

with a resource wave (i.e., Figure S2A), the wave would not be reflected in the used points of an animal that remains in a restricted

area and does not move to exploit the wave. To quantify the available greenscape, we placed a species-specific buffer (i.e., the
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maximum migration distance derived from the NSD classifications; elk = 123 km, mule deer = 235 km, red deer = 76 km and roe

deer = 31 km) around the centroid (mean x and y coordinates) of each animal-year’s GPS locations to delineate the area that was

available to the animal. Across all pixels that fell within the circular buffer, we calculated green-up rate, order, and duration using

the methods described above [12]. To determine if differences in productivity influencedmovement behavior [10], we also calculated

the integrated NDVI [3] across the available landscapes. We compared the available green-up rate, order (exponent estimated from a

power model fit to the semivariogram), duration (difference between the 0.975 and 0.025 quantiles of the date of peak green-up), and

productivity (mean annual integrated NDVI), between migrant and resident individuals within each species to determine if migrants

and residents occupied different phenological landscapes (i.e., greenscapes). To test for differences in the available greenscapes of

migratory and resident individuals within the same species, we use two-sided Kolmogorov-Smirnov tests, corrected for multiple

comparisons using a Bonferroni correction.

To examine the influence of the greenscape onmigratory propensity at the population level, we first subset the data to only include

individuals classified as migratory or resident (52% and 27% of animal-years respectively). Before calculating the proportion of

migratory individuals in a population (hereafter migratory propensity), we excluded any populations with less than 10 individuals total

that were classified as either migratory or resident, which resulted in 56 out of 61 original populations being retained. We calculated

the population-level average of the available green-up rate, order and duration to quantify the greenscape for each population. To

examine the relationship between the greenscape and migratory propensity, we conducted multiple logistic regressions because

green-up order was collinear with green-up rate (Pearson’s correlation = 0.53) at the population level.
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