59 research outputs found

    The Chandrasekhar limit for quark stars

    Full text link
    The Chandrasekhar limit for quark stars is evaluated from simple energy balance relations, as proposed by Landau for white dwarfs or neutron stars. It has been found that the limit for quark stars depends on, in addition to the fundamental constants, the Bag constant.Comment: LateX fil

    A transformation system for definite programs based on termination analysis

    Full text link

    Bounds for Bose-Einstein Correlation Functions

    Full text link
    Bounds for the correlation functions of identical bosons are discussed for the general case of a Gaussian density matrix. In particular, for a purely chaotic system the two-particle correlation function must always be greater than one. On the other hand, in the presence of a coherent component the correlation function may take values below unity. The experimental situation is briefly discussed.Comment: 7 pages, LaTeX, DMR-THEP-93-5/

    Probing the equation of state in the AGS energy range with 3-d hydrodynamics

    Full text link
    The effect of (i) the phase transition between a quark gluon plasma (QGP) and a hadron gas and (ii) the number of resonance degrees of freedom in the hadronic phase on the single inclusive distributions of 16 different types of produced hadrons for Au+Au collisions at AGS energies is studied. We have used an exact numerical solution of the relativistic hydrodynamical equations without free parameters which, because of its 3-d character, constitutes a considerable improvement over the classical Landau solution. Using two different equations of state (eos) - one containing a phase transition from QGP to the Hadronic Phase and two versions of a purely hadronic eos - we find that the first one gives an overall better description of the Au+Au experimental data at AGSAGS energies. We reproduce and analyse measured meson and proton spectra and also make predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t enhancement in pi- spectra is explained by baryon number conservation and strangeness equilibration. We also find that negative kaon data are more sensitive to the eos, as well as the K-/pi- ratio. All hyperons and deltas are sensitive to the presence of a phase transition in the forward rapidity region. Anti-protons, Omegas and heavy anti-baryons are sensitive in the whole rapidity range.Comment: 25 pages (.tex) and 9 figures (.ps

    Proving termination of general Prolog programs

    Full text link

    A sensitive test for models of Bose-Einstein correlations

    Get PDF
    Accurate and sensitive measurements of higher order cumulants open up new approaches to pion interferometry. It is now possible to test whether a given theoretical prediction can consistently match cumulants of both second and third order. Our consistency test utilizes a new technique combining theoretically predicted functions with experimentally determined weights in a quasi-Monte Carlo approach. Testing a general quantum statistics-based framework of Bose-Einstein correlations with this technique, we find that predictions for third order cumulants differ significantly from UA1 data. This discrepancy may point the way to more detailed dynamical information.Comment: 5 pages, 2 figures, revte

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore