968 research outputs found

    Enhanced reaction kinetics in biological cells

    Full text link
    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.Comment: 10 pages, 2 figure

    Analysis of segregated boundary-domain integral equations for mixed variable-coefficient BVPs in exterior domains

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 Birkhäuser Boston.Some direct segregated systems of boundary–domain integral equations (LBDIEs) associated with the mixed boundary value problems for scalar PDEs with variable coefficients in exterior domains are formulated and analyzed in the paper. The LBDIE equivalence to the original boundary value problems and the invertibility of the corresponding boundary–domain integral operators are proved in weighted Sobolev spaces suitable for exterior domains. This extends the results obtained by the authors for interior domains in non-weighted Sobolev spaces.The work was supported by the grant EP/H020497/1 ”Mathematical analysis of localised boundary-domain integral equations for BVPs with variable coefficients” of the EPSRC, UK

    Measurement of air fluorescence light yield induced by an electromagnetic shower

    Get PDF
    For most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, JEM-EUSO, TUS,...), the detection technique of Extensive Air Showers (EAS) is based, at least, on the measurement of the air fluorescence induced signal. The knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the UHECR energy reconstruction. The MACFLY experiment was designed to perform such FLY measurements. In this paper we will present the results of dry air FLY induced by 50 GeV electromagnetic showers as a function of shower age and as a function of the pressure. The experiment was performed at CERN using an SPS electron test beam line. It is shown that the FLY is proportional to deposited energy in air (E_d) and that the ratio FLY/E_d and its pressure dependence remain constant independently of shower age and more generally independently of the excitation source used (single electron track or air shower).For most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, JEM-EUSO, TUS,...), the detection technique of Extensive Air Showers (EAS) is based, at least, on the measurement of the air fluorescence induced signal. The knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the UHECR energy reconstruction. The MACFLY experiment was designed to perform such FLY measurements. In this paper we will present the results of dry air FLY induced by 50 GeV electromagnetic showers as a function of shower age and as a function of the pressure. The experiment was performed at CERN using an SPS electron test beam line. It is shown that the FLY is proportional to deposited energy in air (E_d) and that the ratio FLY/E_d and its pressure dependence remain constant independently of shower age and more generally independently of the excitation source used (single electron track or air shower)

    Anomalous fluctuations of active polar filaments

    Full text link
    Using a simple model, we study the fluctuating dynamics of inextensible, semiflexible polar filaments interacting with active and directed force generating centres such as molecular motors. Taking into account the fact that the activity occurs on time-scales comparable to the filament relaxation time, we obtain some unexpected differences between both the steady-state and dynamical behaviour of active as compared to passive filaments. For the statics, the filaments have a {novel} length-scale dependent rigidity. Dynamically, we find strongly enhanced anomalous diffusion.Comment: 5 pages, 3 figure

    Dynamic concentration of motors in microtubule arrays

    Full text link
    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.Comment: 4pages, 4 figures revte

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    Modeling oscillatory Microtubule--Polymerization

    Get PDF
    Polymerization of microtubules is ubiquitous in biological cells and under certain conditions it becomes oscillatory in time. Here simple reaction models are analyzed that capture such oscillations as well as the length distribution of microtubules. We assume reaction conditions that are stationary over many oscillation periods, and it is a Hopf bifurcation that leads to a persistent oscillatory microtubule polymerization in these models. Analytical expressions are derived for the threshold of the bifurcation and the oscillation frequency in terms of reaction rates as well as typical trends of their parameter dependence are presented. Both, a catastrophe rate that depends on the density of {\it guanosine triphosphate} (GTP) liganded tubulin dimers and a delay reaction, such as the depolymerization of shrinking microtubules or the decay of oligomers, support oscillations. For a tubulin dimer concentration below the threshold oscillatory microtubule polymerization occurs transiently on the route to a stationary state, as shown by numerical solutions of the model equations. Close to threshold a so--called amplitude equation is derived and it is shown that the bifurcation to microtubule oscillations is supercritical.Comment: 21 pages and 12 figure

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore