37 research outputs found

    Deception studies manipulating centrally acting performance modifiers: a review.

    Get PDF
    Athletes anticipatorily set and continuously adjust pacing strategies before and during events to produce optimal performance. Selfregulation ensures maximal effort is exerted in correspondence with the end point of exercise, while preventing physiological changes that are detrimental and disruptive to homeostatic control. The integration of feedforward and feedback information, together with the proposed brain_s performance modifiers is said to be fundamental to this anticipatory and continuous regulation of exercise. The manipulation of central, regulatory internal and external stimuli has been a key focus within deception research, attempting to influence the self-regulation of exercise and induce improvements in performance. Methods of manipulating performance modifiers such as unknown task end point, deceived duration or intensity feedback, self-belief, or previous experience create a challenge within research, as although they contextualize theoretical propositions, there are few ecological and practical approaches which integrate theory with practice. In addition, the different methods and measures demonstrated in manipulation studies have produced inconsistent results. This review examines and critically evaluates the current methods of how specific centrally controlled performance modifiers have been manipulated, within previous deception studies. From the 31 studies reviewed, 10 reported positive effects on performance, encouraging future investigations to explore the mechanisms responsible for influencing pacing and consequently how deceptive approaches can further facilitate performance. The review acts to discuss the use of expectation manipulation not only to examine which methods of deception are successful in facilitating performance but also to understand further the key components used in the regulation of exercise and performance

    Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry

    Get PDF
    INTRODUCTION: Mitral Valve (MV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volume analysis of the MV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions. METHOD: With the present retrospective pilot study we describe a method to transfer MV geometric data to 3D Slicer 2 software, an open-source medical visualization and analysis software package. A newly developed software program (ROIExtract) allowed selection of a region-of-interest (ROI) from the TEE data and data transformation for use in 3D Slicer. FEM models for quantitative volumetric studies were generated. RESULTS: ROI selection permitted the visualization and calculations required to create a sequence of volume rendered models of the MV allowing time-based visualization of regional deformation. Quantitation of tissue volume, especially important in myxomatous degeneration can be carried out. Rendered volumes are shown in 3D as well as in time-resolved 4D animations. CONCLUSION: The visualization of the segmented MV may significantly enhance clinical interpretation. This method provides an infrastructure for the study of image guided assessment of clinical findings and surgical planning. For complete pre- and intraoperative 3D MV FEM analysis, three input elements are necessary: 1. time-gated, reality-based structural information, 2. continuous MV pressure and 3. instantaneous tissue elastance. The present process makes the first of these elements available. Volume defect analysis is essential to fully understand functional and geometrical dysfunction of but not limited to the valve. 3D Slicer was used for semi-automatic valve border detection and volume-rendering of clinical 3D echocardiographic data. FEM based models were also calculated. METHOD: A Philips/HP Sonos 5500 ultrasound device stores volume data as time-resolved 4D volume data sets. Data sets for three subjects were used. Since 3D Slicer does not process time-resolved data sets, we employed a standard movie maker to animate the individual time-based models and visualizations. Calculation time and model size were minimized. Pressures were also easily available. We speculate that calculation of instantaneous elastance may be possible using instantaneous pressure values and tissue deformation data derived from the animated FEM

    Consommation et développement régional : le cas de la viande bovine en Midi-Pyrénées (1930-1985)

    No full text
    [eng] Most of beef meat sold in Toulouse during the thirties came from animals bought alive all over the region in the cattle breeding areas, from the Rouergue to the Pyrénées. Since 1960 this market has completely changed : the region's husbandry does not fit anymore the urban wishes, the municipal slaughterhouse is out of date and the local dealers are superseded by their external competitors, so that the largest part of beef meat comes from outside. Since 1970 the beef meat trade has requisted more elaborated products : boned, minced or frozen meat, sometimes sold in vacuum packings ; such an evolution is related to the swift development of hypermarkets, enterprise canteens and self-service restaurant. The supplying conditions of the city are described through two successives models and a third model is coming into view. [fre] Depuis les années 1930, l'approvisionnement en viande bovine de Toulouse reposait surtout sur la fourniture d'animaux sur pied collectés dans la zone correspondant à Midi-Pyrénées. L'évolution ultérieure, trÚs rapide depuis 1960, conduit à la prépondérance des viandes bovines. AprÚs 1970 se développe l'utilisation de produits de plus en plus élaborés (désossé, haché, congelé, sous vide), en liaison avec l'expansion rapide des hypermarchés, des cantines et des restaurants en libre-service. La prise en compte de ces éléments permet de définir les deux modÚles d'approvisionnement de l'agglomération toulousaine qui se sont succédés et de prévoir l'émergence d'un troisiÚme modÚle.

    Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0

    No full text
    OASIS is coupling software developed primarily for use in the climate community. It provides the ability to couple different models with low implementation and performance overhead. OASIS3-MCT is the latest version of OASIS. It includes several improvements compared to OASIS3, including elimination of a separate hub coupler process, parallelization of the coupling communication and run-time grid interpolation, and the ability to easily reuse mapping weight files. OASIS3-MCT_3.0 is the latest release and includes the ability to couple between components running sequentially on the same set of tasks as well as to couple within a single component between different grids or decompositions such as physics, dynamics, and I/O. OASIS3-MCT has been tested with different configurations on up to 32 000 processes, with components running on high-resolution grids with up to 1.5 million grid cells, and with over 10 000 2-D coupling fields. Several new features will be available in OASIS3-MCT_4.0, and some of those are also described

    The CNRM-CM5.1 global climate model: description and basic evaluation

    Get PDF
    A new version of the general circulation model CNRM-CM has been developed jointly by CNRM-GAME (Centre National de Recherches MĂ©tĂ©orologiques—Groupe d’études de l’AtmosphĂšre MĂ©tĂ©orologique) and Cerfacs (Centre EuropĂ©en de Recherche et de Formation AvancĂ©e) in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The purpose of the study is to describe its main features and to provide a preliminary assessment of its mean climatology. CNRM-CM5.1 includes the atmospheric model ARPEGE-Climat (v5.2), the ocean model NEMO (v3.2), the land surface scheme ISBA and the sea ice model GELATO (v5) coupled through the OASIS (v3) system. The main improvements since CMIP3 are the following. Horizontal resolution has been increased both in the atmosphere (from 2.8° to 1.4°) and in the ocean (from 2° to 1°). The dynamical core of the atmospheric component has been revised. A new radiation scheme has been introduced and the treatments of tropospheric and stratospheric aerosols have been improved. Particular care has been devoted to ensure mass/water conservation in the atmospheric component. The land surface scheme ISBA has been externalised from the atmospheric model through the SURFEX platform and includes new developments such as a parameterization of sub-grid hydrology, a new freezing scheme and a new bulk parameterisation for ocean surface fluxes. The ocean model is based on the state-of-the-art version of NEMO, which has greatly progressed since the OPA8.0 version used in the CMIP3 version of CNRM-CM. Finally, the coupling between the different components through OASIS has also received a particular attention to avoid energy loss and spurious drifts. These developments generally lead to a more realistic representation of the mean recent climate and to a reduction of drifts in a preindustrial integration. The large-scale dynamics is generally improved both in the atmosphere and in the ocean, and the bias in mean surface temperature is clearly reduced. However, some flaws remain such as significant precipitation and radiative biases in many regions, or a pronounced drift in three dimensional salinity
    corecore