20 research outputs found

    Structural diversity in alkali metal and alkali metal magnesiate chemistry of the bulky 2,6-diisopropyl-N-(trimethylsilyl)anilino ligand

    Get PDF
    Bulky amido ligands are precious in s-block chemistry since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n-butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky aryl-silyl amido ligand [N(SiMe3)(Dipp)] (Dipp = 2,6-iPr2-C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s-block metal amides. Solvation by PMDETA or TMEDA gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure but TMEDA affords a novel, hemi-solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ-nBu)]∞ (M = Na or K), are also revealed though these breakdown to their homometallic components in donor solvent as revealed through NMR and DOSY studies

    Structurally defined potassium-mediated zincation of pyridine and 4-R-substituted pyridines (R = Et, iPr, tBu, Ph, and Me2N) by using dialkyl-tmp-zincate bases

    Get PDF
    Two potassium-dialkyl-TMP-zincate bases [(pmdeta)K(mu-Et)(mu-tmp)Zn(Et)] (1) (PMDETA = N,N,N',N'',N''-pentamethyldiethylenetriamine, TMP = 2,2,6,6-tetramethylpiperidide), and [(pmdeta)K(mu-nBu)(mu-tmp)Zn(nBu)] (2), have been synthesized by a simple co-complexation procedure. Treatment of 1 with a series of substituted 4-R-pyridines (R = Me(2)N, H, Et, iPr, tBu, and Ph) gave 2-zincated products of the general formula [{2-Zn(Et)(2)-mu-4-R-C(5)H(3)N}(2)2{K(pmdeta)}] (3-8, respectively) in isolated crystalline yields of 53, 16, 7, 23, 67, and 51%, respectively; the treatment of 2 with 4-tBu-pyridine gave [{2-Zn(nBu)(2)-mu-4-tBu-C(5)H(3)N}(2)2{K(pmdeta)}] (9) in an isolated crystalline yield of 58%. Single-crystal X-ray crystallographic and NMR spectroscopic characterization of 3-9 revealed a novel structural motif consisting of a dianionic dihydroanthracene-like tricyclic ring system with a central diazadicarbadizinca (ZnCN)(2) ring, face-capped on either side by PMDETA-wrapped K(+) cations. All the new metalated pyridine complexes share this dimeric arrangement. As determined by NMR spectroscopic investigations of the reaction filtrates, those solutions producing 3, 7, 8, and 9 appear to be essentially clean reactions, in contrast to those producing 4, 5, and 6, which also contain laterally zincated coproducts. In all of these metalation reactions, the potassium-zincate base acts as an amido transfer agent with a subsequent ligand-exchange mechanism (amido replacing alkyl) inhibited by the coordinative saturation, and thus, low Lewis acidity of the 4-coordinate Zn centers in these dimeric molecules. Studies on analogous trialkyl-zincate reagents in the absence and presence of stoichiometric or substoichiometric amounts of TMP(H) established the importance of Zn-N bonds for efficient zincation

    Deprotonative Metalation of Functionalized Aromatics using Mixed Lithium-Cadmium, Lithium-Indium, and Lithium-Zinc Species

    No full text
    International audienceIn situ mixtures of CdCl(2)TMEDA (0.5 equiv; TMEDA = N,N,N',N'-tetramethylethylenediamine) or InCl(3) (0.33 equiv) with [Li(tmp)] (tmp = 2,2,6,6-tetramethylpiperidino; 1.5 or 1.3 equiv, respectively) were compared with the previously described mixture of ZnCl(2)TMEDA (0.5 equiv) and [Li(tmp)] (1.5 equiv) for their ability to deprotonate anisole, benzothiazole, and pyrimidine. [(tmp)(3)CdLi] proved to be the best base when used in tetrahydrofuran at room temperature, as demonstrated by subsequent trapping with iodine. The Cd-Li base then proved suitable for the metalation of a large range of aromatics including benzenes bearing reactive functional groups (CONEt(2), CO(2)Me, CN, COPh) or heavy halogens (Br, I), and heterocycles (from the furan, thiophene, pyrrole, oxazole, thiazole, pyridine, and diazine series). Five-membered heterocycles benefiting from doubly activated positions were similarly dideprotonated at room temperature. The aromatic lithium cadmates thus obtained were involved in palladium-catalyzed cross-coupling reactions or simply quenched with acid chlorides

    Deprotonative metalation of chloro- and bromopyridines using amido-based bimetallic species and regioselectivity-computed CH acidity relationships.

    No full text
    International audienceA series of chloro- and bromopyridines have been deprotometalated by using a range of 2,2,6,6-tetramethylpiperidino-based mixed lithium-metal combinations. Whereas lithium-zinc and lithium-cadmium bases afforded different mono- and diiodides after subsequent interception with iodine, complete regioselectivities were observed with the corresponding lithium-copper combination, as demonstrated by subsequent trapping with benzoyl chlorides. The obtained selectivities have been discussed in light of the CH acidities of the substrates, determined both in the gas phase and as a solution in THF by using the DFT B3LYP method

    Evaluating cis-2,6-dimethylpiperidide (cis-DMP) as a base component in lithium-mediated zincation chemistry

    Get PDF
    Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6-tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non-TMP based mixed-metal bases and, as cis-2,6- dimethylpiperidide (cis-DMP) was chosen as the alternative amide, developing cis-DMP zincate chemistry which has received meagre attention compared to that of its methyl-rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis-DMP)Et] (TMEDA=N,N,N′,N′- tetramethylethylenediamine) has been synthesised by co-complexation of Li(cis-DMP), EtZn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X-ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N-diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis-DMP)Et] has been probed and contrasted with that of the known but previously uninvestigated di-tert-butylzincate, [(TMEDA)LiZn(cis-DMP)tBu]. The former was found to be the superior base (for example, producing the ortho-deuteriated product in respective yields of 78 % and 48 % following D O quenching of zincated benzamide intermediates). An 88 % yield of 2-iodo-N,N-diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3-hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, EtZn and TMEDA system. Under certain conditions, the cis-DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di-tert-butylzincate and crystallographically characterised, namely the pre-metallation complex [{(iPr)N(Ph)Ci'O}LiZn(cis-DMP)tBu ] and the post-metallation complex [(TMEDA)Li(cis-DMP){2-[1-C(=O) N(iPr)]CH}Zn(tBu)], shed valuable light on the structures and mechanisms involved in these alkali-metal-mediated zincation reactions. Aspects of these reactions are also modelled by DFT calculations. Amide austerity: Lithium amidozincate bases replacing expensive TMP (2,2,6,6-tetramethylpiperidide) by inexpensive cis-DMP (cis-2,6- dimethylpiperidide) have been synthesised (see scheme) and utilised for the ortho-deprotonation of a benzamide substrate for comparision with their TMP and other common amido analogues
    corecore