11 research outputs found
Planck intermediate results XXV : The Andromeda galaxy as seen by Planck
The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (greater than or similar to 0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 mu m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 mu m emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 +/- 1.0) K with a spectral index of 1.62 +/- 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M-circle dot yr(-1). We find a 2.3 sigma detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 +/- 0.3 Jy, which is in line with expectations from our Galaxy.Peer reviewe
Barn Owl pellets (Aves: Tyto furcata) reveal a higher mammalian richness in the Restinga de Jurubatiba National Park, Southeastern Brazil
LPG: Pollutant emission and performance enhancement for spark-ignition four strokes outboard engines
Abstract Experimental research into the use of LPG in spark-ignition outboard engines is presented. Two different outboard engines were adapted for operation with bottled LPG dosed in gaseous form. The aim of the study was to determine the basic parameters and quantify the emission index for carbon monoxide, unburned hydrocarbons, and nitric oxides when LPG is used instead of gasoline. The results obtained indicate that with the use of LPG, specific fuel consumption and CO emissions were much lower without noticeable power loss while HC emissions are shown to be little affected by fuel substitution. In contrast, NO x emissions were higher, but could be kept below current and future emission limits
Episignature Mapping of TRIP12 Provides Functional Insight into Clark–Baraitser Syndrome
Clark–Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark–Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders
Photosynthetic acclimation to elevated CO2 concentration in a sweet pepper (Capsicum annuum) crop under Mediterranean greenhouse conditions: influence of the nitrogen source and salinity
Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies
Submitted to A&AThe dust-HI correlation is used to characterize the emission properties of dust in the diffuse interstellar medium. We cross-correlate sky maps from Planck, WMAP, and DIRBE, at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21-cm line emission of neutral atomic hydrogen, over a contiguous area of 7500 deg centred on the southern Galactic pole. Our analysis yields four specific results. (1) The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence for dust evolution within the diffuse ISM. The mean dust opacity is measured to be for GHz. (2) We map the spectral index of dust emission at millimetre wavelengths, which is remarkably constant at . We compare it with the far infrared spectral index beta_FIR derived from greybody fits at higher frequencies, and find a systematic difference, , which suggests that the dust SED flattens at GHz. (3) We present spectral fits of the microwave emission correlated with HI from 23 to 353 GHz, which separate dust and anomalous microwave emission. The flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum, which accounts for % of the dust emission at 100 GHz and could represent magnetic dipole emission. Alternatively, it could account for an increasing contribution of carbon dust, or a flattening of the emissivity of amorphous silicates, at millimetre wavelengths. These interpretations make different predictions for the dust polarization SED. (4) We identify a Galactic contribution to the residuals of the dust-HI correlation, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis
