181 research outputs found
Theoretical studies of the geodynamics of accretion boundaries in the plate tectonics
Various aspects of the physical processes occurring at the accretion plate boundary in plate tectonics have been investigated. Regional stresses have been investigated, arising from lateral density contrasts in the ocean lithosphere. Elastic, visco-elastic and elastic/visco-elastic models predict regional stresses in the ocean basin of the order of 0.25 kb. Investigation of the thermal stresses created in the oceanic lithosphere as a consequence of the cooling of the ocean lithosphere as it moves away from the ridge axis, shows that tensional stresses occur in the upper lithosphere and compressional stresses in the lower lithosphere. An elastic/viscous model of the lithosphere predicts deviatoric stresses of the order of 3 kb. in the upper crust. The temperature distribution beneath the ocean ridge with magma solidifying to form crustal layer 3 has been investigated. Numerical models show that the width of the magma chamber and the thickness of the dyke complex depends on half spreading rate. If there is significant crystal settling, the width of the chamber is predicted to be considerably reduced. A critical half spreading rate of 0.45 cm/yr is predicted, below which the intruded material solidifies instantaneously. Computations support Cann's petrological model. Investigation of the magnitude of the stresses caused by the buoyancy of a magma chamber in the lower crust at the ridge axis suggest that the magma chamber is unable to cause crustal fracture and is, alone, a dynamically stable structure. The additional stresses due to the upthrust of molten upper mantle material is required to cause crustal fracture and a zone of fracture of less than 5 km wide is predicted. The stress field created in the oceanic lithosphere by a mantle plume has been calculated analytically. Estimates of the plume dimensions and velocity suggested by Morgan are predicted to be just sufficient to cause fracture of the lithosphere above the plume axis
Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary
International audienceWe focus on the Iberian-European plate boundary (IEPB), whose nature, age, and evolution are strongly debated. In contrast to previous interpretations of the IEPB as a major lithospheric-scale left-lateral strike-slip fault, we propose a more complex deformation history. The mapping of rift domains at the transition between Iberia and Europe emphasizes the existence of spatially disconnected rift systems. Based on their restoration, we suggest that the deformation was partitioned between a set of distinct left-lateral transtensional rift systems from the Late Jurassic to Early Cretaceous. A plate kinematic reorganization at Aptian-Albian time resulted in the onset of sea-floor spreading in the western Bay of Biscay and extreme crustal and lithosphere thinning in intra-continental rift basins to the east. The formation and reactivation of the IEPB is interpreted as the result of the polyphase evolution of a diffuse transient plate boundary that failed to localize. The results of this work may provide new insights on (1) processes preceding breakup and the initiation of segmented and strongly oblique shear margins, (2) the deformation history of nascent divergent plate boundaries, and (3) the kinematics of the southern North Atlantic and Alpine domain in western Europe
Preserved organic matter in a fossil Ocean Continent Transition in the Alps: the example of Totalp, SE Switzerland
International audienc
Crustal structure of the conjugate Equatorial Atlantic Margins, derived by gravity anomaly inversion
Abstract The crustal structure of the Equatorial Atlantic conjugate margins (South America and West Africa) has been investigated using 3D gravity anomaly inversion, which allows for (1) the elevated geothermal gradient of the lithosphere following rifting and break-up and (2) magmatic addition to the crust during rifting and break-up. It is therefore particularly suitable for the analysis of rifted margins and their associated ocean basins. Maps of crustal thickness and conjugate-margin stretching, derived from gravity anomaly inversion, are used to illustrate how the Equatorial Atlantic opened as a set of stepped rift-transform segments, rather than as a simple orthogonal rifted margin. The influence of the transform faults and associated oceanic fracture zones is particularly clear when the results of the gravity anomaly inversion are combined with a shaded-relief display of the free-air gravity anomaly. A set of crustal cross-sections has been extracted from the results of the gravity inversion along both equatorial margins. These illustrate the crustal structure of both rifted-margin segments and transform-margin segments. The maps and cross-sections are used to delineate crustal type on the margins as (1) inboard, entirely continental, (2) outboard, entirely oceanic and (3) the ocean–continent transition in between where mixed continental and magmatic crust is likely to be present. For a given parameterization of melt generation the amount of magmatic addition within the ocean–continent transition is predicted by the gravity inversion. One of the strengths of the gravity-inversion technique is that these predictions can be made in the absence of any other directly acquired data. On both margins anomalously thick crust is resolved close to a number of oceanic fracture zones. On the South American margin we believe that this thick crust is probably the result of post-break-up magmatism within what was originally normal-thickness oceanic crust. On the West African margin, however, three possible origins are discussed: (1) continental crust extended oceanwards along the fracture zones; (2) oceanic crust magmatically thickened at the fracture zones; and (3) oceanic crust thickened by transpression along the fracture zones. Gravity inversion alone cannot discriminate between these possibilities. The cross-sections also show that, while ‘normal thickness’ oceanic crust (c. 7 km) predominates regionally, local areas of thinner (c. 5 km) and thicker (c. 10 km) oceanic crust are also present along both margins. Finally, using maps of crustal thickness and thinning factor as input to plate reconstructions, the regional palaeogeography of the Equatorial Atlantic during and after break-up is displayed at 10 Ma increments.</jats:p
Mid-mantle deformation inferred from seismic anisotropy
With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region
Mantle flow in regions of complex tectonics: insights from Indonesia
Indonesia is arguably one of the tectonically most complex regions on Earth today due to its location at the junction of several major tectonic plates and its long history of collision and accretion. It is thus an ideal location to study the interaction between subducting plates and mantle convection. Seismic anisotropy can serve as a diagnostic tool for identifying various subsurface deformational processes, such as mantle flow, for example. Here, we present novel shear wave splitting results across the Indonesian region. Using three different shear phases (local S, SKS, and downgoing S) to improve spatial resolution of anisotropic fabrics allows us to distinguish several deformational features. For example, the block rotation history of Borneo is reflected in coast-parallel fast directions, which we attribute to fossil anisotropy. Furthermore, we are able to unravel the mantle flow pattern in the Sulawesi and Banda region: We detect toroidal flow around the Celebes Sea slab, oblique corner flow in the Banda wedge, and sub-slab mantle flow around the arcuate Banda slab. We present evidence for deep, sub-520 km anisotropy at the Java subduction zone. In the Sumatran backarc, we measure trench-perpendicular fast orientations, which we assume to be due to mantle flow beneath the overriding Eurasian plate. These observations will allow to test ideas of, for example, slab–mantle coupling in subduction regions
- …