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ABSTRACT

Various aspects of the physical processes occurring
at the accretion plate boundary in plate tectonics have
been investigated.

Regional stresses have been investigated, arising
from lateral density contrasts in the ocean lithosphere.
Elastic, visco-elastic and elastic/visco-elastic models
predict regional stresses in the ocean basin of the order
of 0.25 kb..

Investigation of the thermal stresses created in the
oceanic lithosphere as a consequence of the cooling of the
ocean lithosphere as it moves away from the ridge axis,
shows that tensional stresses occur in the upper lithosphere
and compressional stresses in the lower lithosphere. An
elastic/viscous model of the lithosphere predicts deviatoric
stresses of the order of 3 kb. in the upper crust.

The temperature distribution beneath the ocean ridge
with magma solidifying to form crustal layer 3 has been
investigated. Numerical models show that the width of the
magma chamber and the thickness of the dyke complex depends
on half spreading rate. If there is significant crystal
settling, the width of the chamber is predicted to be con-
siderably reduced. A critical half spreading rate of 0.45
cm/yr is predicted, below which the intruded material

solidifies instantaneously. Computations support Cann's



petrological model.

Investigation of the magnitude of the stresses caused
by the buoyancy of a magma chamber in the lower crust at
the ridge axis suggest that the magma chamber is unable to
cause crustal fracture and is, alone, a dynamically stable
structure. The additional stresses due to the upthrust
of molten upper mantle material is required to cause crustal
fracture and a zone of fracture of less than 5 km wide is
predicted.

The stress field created in the oceanic lithosphere
by a mantle plume has been calculated analytically.
Estimates of the plume dimensions and velocity suggested
by Morgan are predicted to be just sufficient to cause

fracture of the lithosphere above the plume axis.
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CHAPTER 1

OCEANIC STRUCTURE, COMPOSITION AND
ACCRETION PROCESS STUDIES

1.1 Introduction

In this thesis, models of the oceanic lithosphere
structure and the processes occurring at the accretion
boundary in plate tectonics are investigated
quantitatively. These models investigate the stress
fields in the oceanic lithosphere which arise from the
laterally varying lithosphere density distribution,
lithosphere thermal contraction, lithosphere intrusion
by upwelling asthenosphere, and asthenosphere flow. The
thermal evolution and solidification of the oceanic crust
in the vicinity of the ridge axis has also been determined.

The structure and composition of the oceanic lithos-
phere are described with evidence in this chapter,
providing the geological foundation for the lithosphere
models. Major theoretical studies of the accretion

processes are also summarized.



1.2 Oceanic structure

The ocean floor is dominated by the topographical
feature known as the ocean ridge, which is typically about
2 to 3 km higher than the flanking ocean basins. The
relief of the ocean ridges decays gently to the level of
the ocean basins over a distance varying between approx-
imately 500 to 4,000 km, and the ridges extend for a total
length of 80,000 km throughout the world's oceans. In the
theory of plate tectonics (McKenzie and Parker, 1967; Le Pichon,
1968), the ridge crest corresponds to the accretion boundary
where new oceanic lithosphere is created. Ocean ridges are
offset at intervals by transform faults (Wilson, 1965).

Seismic refraction and reflection have shown the oceanic
crust to be approximately 8 km thick and divided into 3
layers, classified as oceanic layers 1, 2 and 3. The refraction
and reflection work and techniques have been summarized by
Ludwig, Nafe and Drake (1970) and Ewing and Ewing (1970)
respectively. Shor, Menard and Raitt (1970) have presented a
statistical analysis of a considerable quantity of data for
velocity and thickness of the oceanic layers. Layer 1 forms
a sediment cover above the igneous lower crust (layers 2 and 3)
and increases in thickness with age and distance from the ridge
axis in accordance with the predictions of the theory of sea
floor spreading. Layer 2 is of approximate constant thickness

over the ocean basins and ridges (Goslin et al., 1972).



Layer 3 appears to increase in thickness away from the
ridge crest towards the ocean basins (Dehlinger, 1970;
Talwani et al., 1971). Goslin et al. (1972), from
statistical analysis of existing data, suggested a layer 3
thickening from 3.5 km to 5 km with increasing distance from
the ridge axis. Maynard (1970) has presented evidence for
a layer of velocity 7.3 km/sec. existing at the base of
layer 3 in the Pacific.

The structure at the ridge crest has been investigated
extensively by seismic refraction methods (Talwani et al.,
1971; Aumento et al., 1971; Fowler and Mathews, 1974;
Whitmarsh, 1975). Results are inconclusive with oceanic
layer 3 absent in the interpretation of some researchers,
yet present in those of others. Whitmarsh (1975) has
suggested, from seismic evidence, the existence of a narrow
zone, width approximately 2.5 km, of low velocity in the
crust at the ridge crest in the FAMOUS region of the North
Atlantic, which probably corresponds to the intrusion zone.
The velocity of the upper mantle at the ridge crest is in
some places less than the usual upper mantle velocity of
8.15 km/sec. (Talwani et al., 1971; Aumento et al., 1971;
Fowler and Matthews, 1974; Tryggvason, 1964).

Surface wave dispersion analysis of teleseismic data
indicates an ocean lithosphere thickness of approximately

70 km (Kanomori and Press, 1970) which is considerably thinner



than that of the continental lithosphere. Forsyth (1975),
using similar techniques has shown the ocean lithosphere
thickens away from the ridge axis.

Gravity surveys carried out across the ocean ridges
show that they are in approximately isostatic equilibrium
(Vening Meinesz, 1948; Talwani et al., 1971). The ocean
ridges, which rise up to 3 km above the ocean basins, must
therefore be compensated by a low density region below, yet
from the seismic refraction evidence (Shor et al., 1970;
Ludwig et al., 1970; Talwani et al., 1971) it can be seen
that this is not achieved by crustal thickening. Talwani
et al. (1965) from gravity and seismic evidence produced a
model, later verified by Dehlinger (1970), which shows an
anomalous low density upper mantle centred about the ridge
axis with a density contrast of approximately -0.25 gm/cc
extending down to depths of 40 km.

Interpretation of the magnetic anomalies of the ocean
floor (Mason and Raff, 1961; Vacquier, 1969; Heirtzler, 1970)
has provided a major contribution in evidence for sea floor
spreading and plate tectonics (Vine and Mathews, 1963; Vine
and Wilson, 1965; Vine, 1966). The magnetized layer res-
ponsible for the anomalies coincides with the oceanic basement,
layer 2 (Vine and Wilson, 1965). Talwani (1971) has suggested
that the magnetization is restricted to the top 400 metres
although recent drilling of layer 2 (DSDP - Leg 37, 1974)

indicates that material magnetized strongly yet randomly may



extend throughout layer 2.

The correlations between topographic roughness of the
ocean floor, the presence of rift valleys, and spreading
rates were noted by Menard (1967). For spreading rates
smaller than 3 cm/yr the large scale oceanic topography
is uneven and rift valleys exist (Laughton et al., 1970).
Faster spreading rates, for example the East Pacific rise
(Talwani et al., 1965) correspond to smoother topography
with the absence of rift valleys. The rift valleys or
median valleys of the ridge crests are typically 10O to
20 km wide and up to 3 km deep relative to the flanking
crest mountains. The valley is bounded by steep scarps
which dip towards the ridge axis (Le Pichon et al., 1971).
The intrusion zone is restricted to a narrow zone only a
few kilometres wide according to the analysis of the
magnetic anomalies of the ocean floor (Matthews and Bath,
1967; Larson and Spiess, 1968) and seismicity (Francjs and
Porter, 1973). To the flanks tectonic activity is restricted
to the upfaulting of the large blocks (Laughton et al., 1970)

which form the sides of the rift valley structure.

1.3 Composition of the oceanic crust and upper mantle

The composition of the oceanic crust and upper mantle



must be inferred from geochemical analysis of samples
collected by dredging and drilling on the ocean floor and
from the seismic velocities and densities obtained from
geophysical studies.

Dredging and photography of oceanic layer 2, where it
outcrops on the ocean floor, reveal that its upper surface
is composed of tholeiitic pillow lavas (Aumento et al., 1971;
Talwani et al., 1971; Engel and Engel, 1970; Udintsev and
Dmi triev, 1970). Drilling has confirmed the basaltic
composition of layer 2 (Maxwell et al., 1970) and the seismic
velocities obtained from the drill cores agree well with the
refraction velocities of the layer (DSDP - Leg 37, 1974).
Collection of rock samples from the fault scarps of the ridge
crest and fracture zones indicate the presence of basalts and
gabbros, and their metamorphic forms together with peridotite
and serpentinite (Engel and Engel, 1970).

Relevant to any discussion of the structure and composition
of the oceanic crust is the study of ophiolites which are
interpreted as upthrusted ancient ocean floor. The sections
deduced from these studies have been summarized for several
ophiolite complexes (Jackson, Green and Moores, 1975; Gass,
Smith and Vine, 1975). Interpretation of the ophiolite sequence
in terms of oceanic crust and upper mantle is shown in figure 1.1
and is adapted from Gass et al. (1975). This interpretation
assumes a considerable thinning of the ophiolite sequence

during emplacement from their original oceanic environment.






Oceanic layer 2 is now widely accepted as being composed
of basaltic pillow lavas lying above basalts metamorphosed
to varying extent, this interpretation being consistent with
collected samples seismic velocities and the origin of the
magnetic anomalies.

The composition of layer 3 is however the subject of
considerable argument (Matthews, 1971). Hess (1962) proposed
that this layer was composed of partially serpentinized
peridotite, while Cann (1970, 1974) believed that it consists
of a metagabbroic layered complex. The arguments against the

serpentinized peridotite composition are as follows:

(1) The high temperature of the crust at the ridge
crest would prevent the serpentinization of
peridotite which can only occur for temperatures

less than 500°C or possibly 300°C (Coleman, 1971).

(2) The range of velocities for serpentinized peridotite
is from 5 to 8 km/sec (Coleman, 1971) yet layer 3
has a very consistent velocity of about 6.8 km/sec.

(Shor et al., 1970), suggesting a remarkably uniform

degree of hydration.

(3) Gabbros and metagabbros dredged and drilled at the
ridge crest have a velocity too high for layer 2

and so most probably belong to layer 3.

The metagabbro composition for layer 3, however, fails



to explain the thickening of layer 3 with increasing
distance from the ridge (Talwani et al., 1971; Dehlinger,
1970; Goslin et al., 1972). However, this effect is

not proved conclusively (Whitmarsh, 1975).

An hybrid composition, overcoming some of these
objections, is a layer 3 consisting of approximately 2-3 km
of gabbro below which lies a partially serpentinized
peridotite (Le Pichon et al., 1971). All of these arguments
are of course subject to the accuracy of the geophysical
methods which investigate the oceanic crust and upper mantle.

Green and Ringwood (1969) have suggested that the
tholeiitic basalts of the ocean crust are the product of
fractionation of a mantle of pyrolitic composition at about
30 km depth. Extensive partial melting in the upper mantle
at these depths are indicated (Green and Ringwood, 1969; Kay,
Hubbard and Gast, 1970). A mechanism has been suggested by
Bott (1965) for the generation of a partial melt in an
upwelling mantle convection limb and this convection or
advection mechanism is thought to be responsible (Green and

Ringwood, 1969) for the partial melts under ocean ridges.

1.4 Models of the accretion process

The creation of new oceanic lithosphere involves the

diapirism of partially molten asthenosphere into the



lithosphere at the ocean ridges. Cann (1970, 1974) has
proposed a model where partially molten pyrolitic mantle
ascends from depths of 100-150 km and fractionates at a
depth of about 20-30 km producing a basalt liquid and an
ultramafic residual. Prior to fractionation the pyrolitic
partial melt behaves as a relatively fluid material but
after separation of the basaltic liquid, the residual is
left below its solidus temperature and solidifies (Presnall,
1969; Cann, 1974). The basaltic liquid being less dense
than the surrounding upper mantle then rises, collecting
into diapiric blobs (Weertman, 1972) and is intruded into
the base of the crust forming a reservoir from which basaltic
dykes penetrate upwards through the upper crust and extrude
on the ocean floor, forming layer 2. With time, the basalt
magma in the lower crust solidifies forming a layered gabbroic
complex corresponding to layer 3. The Moho represents, in
this model, the compositional boundary between basaltic
fractionates and ultramafic residuals. This composition and
structure for the oceanic crust and upper mantle is consistent
with ophiolite studies (Gass et al., 1975; Jackson et al.,
1974) and the geophysical interpretation of the ocean basins
(Shor et al., 1970).

The alternative model (Hess, 1962) where layer 3 is
composed of serpentinized peridotite is not as well supported

as the model above.
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Lachenbruch (1973) has developed the theory of mantle
fractionation mathematically and has pointed out the
possibility of enrichment of the lithosphere in crustal
component with respect to the asthenosphere. Bottinga (1973)
presented a combined chemical and thermal model which
however used an all peridotite composition for layer 3,

which is probably unrealistic.

1.5 The thermal evolution of the lithosphere

A model for the thermal evolution of the lithosphere
has been suggested by McKenzie (1967) in which a continuous
thickness of lithosphere is produced on a vertical boundary
at a ridge axis. As the lithosphere moves away at a constant
velocity, new hot lithosphere forms in the space between the
diverging plates. McKenzie calculated the temperature
throughout the lithosphere, assuming that the temperature of
the newly formed lithosphere at the ridge axis coincided
with that of the lithosphere - asthenosphere boundary. The
amount of cooling of the lithosphere increases with distance
from ridge axis and decreases with depth producing thermal
contraction which gives the typical ocean rise topography
(Le Pichon et al., 1971). McKenzie used this temperature
distribution to produce heat flow profiles in approximate

agreement with observed heat anomalies at ocean ridges,
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which show a maximum above the ridge crests (Langseth

and Von Herzen, 1970; Talwani et al., 1971). The temperature
McKenzie used however for the lithosphere-asthenosphere
boundary was too low.

In any model of the oceanic lithosphere the density
distribution due to petrological zonation and thermal
contraction must compensate the oceanic topography since
oceanic regions are in isostatic equilibrium (Talwani et al.,
1965). Refinement of the McKenzie model made by including
the density variations of the mineral assemblage changes due
to the lithosphere's varying pressure and temperature field,
produces a much better agreement with the observed data for
the ocean topography, (Sclater and Francheteau, 1970; Haigh,
1973; Forsyth and Press, 1971). Comparison of calculated
and observed gravity anomalies enabled Haigh (1973) to
estimate the temperature and depth of the base of the oceanic
lithosphere. Typical thicknesses and temperatures were 70
to 80 km and 1000 to 1200°¢ respectively. The density dis-
tributions produced by these models, especially those due to
the plagioclase to pyroxene pyrolite mineral assemblage change,
show a resemblance to the density model for the lithosphere
obtained by Talwani et al. (1965) from geophysical data.

An alternative model for examining the temperature
distributions in the upper mantle and crust was suggested

by Oxburgh and Turcotte (1968) which consisted of a vertically
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rising limb of a convection cell turning over to flow
horizontally in the upper mantle. Their model differs
from that presented by McKenzie which assumes rigid
lithosphere to exist at the ridge axis.

The thermal model of McKenzie (1967) has been further
developed by Oldenburg (1975) and Sleep (1975) allowing
the solidification of the lithosphere to be investigated in
addition to its cooling. Oldenburg (1975) has investigated
the formation of the lithosphere from the asthenosphere
by solidification of a partial melt and has suggested that
the lithosphere thickens away from the ridge axis. Sleep
(1975) has examined the formation and solidification of a
magma chamber at the ocean ridges. 1In Chapter 5 the
solidification of the ocean crust is further investigated
with consideration taken for crystal settling and convection

of the magma.

1.6 The stresses in the lithosphere

The stresses of the oceanic lithosphere may be categorized

according to their origins and are as follows:

(1) Stresses resulting from lithospheric density
distributions.

(2) Cooling stresses of the lithosphere.
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(3) Stresses caused by the formation of new lithosphere
from upwelling asthenosphere.

(4) Stresses exerted on the lithosphere base by
asthenosphere flow.

(5) Membrane stresses (Turcotte and Oxburgh, 1973).

The geodynamical implications of the oceanic topography
and the lithospheric density variations have been in-
vestigated by several workers. Jacoby (1970) calculated
the horizontal forces due to gravity sliding of the ocean
lithosphere along the top of the asthenosphere and concluded
that this could be an effective driving force contribution
for sea floor spreading. Stephansson and Berner (1970)
used the finite element method to evaluate the fluid behaviour
and stress fields of the oceanic lithosphere. They suggested
that regional tension occurs at the ridge crest and com-
pression in the ocean basins. Artyushkov (1973) showed
by analytical calculations that the oceanic lithosphere
topography and density distribution create a compressive
horizontal stress in the ocean basins. In Chapter 3, the
regional load stresses due to the topographic feature
and density distribution are calculated for an elastic
and visco-elastic model of the lithosphere by the method

of finite elements.
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Movement of the lithosphere away from the hot axis of
its creation at the ridges enables the lithosphere to cool
(McKenzie, 1967) and this cooling results in thermal stresses
throughout the lithosphere. Turcotte (1974) deduced the
stresses and the bending of the lithosphere and the results
suggest a possible mechanism for the formation of fracture
zones. His analytical derivation, however, used the
simplifying assumption that the vertical thermal stresses
throughout the lithosphere are zero which is unrealistic.

The stresses caused by lithospheric cooling are examined in
3 dimensions in Chapter 4 by use of the finite element method
of stress analysis.

The emplacement mechanism of new lithosphere must,
without doubt, exert considerable force on the surrounding
lithosphere. Diapirism of the mobile mantle material will
produce outward pressure into the lithosphere. Piper and
Gibson (1972) calculated the stress field resulting from a
circular cross-sectioned cavity of negative density contrast
situated in the crust and upper mantle. Their model represents
a magma chamber of intruding body and their calculations
showed that a region of horizontal tension is created above
the body with horizontal compression at each side and, from
this, dyke and sill distributions were predicted. 1In
Chapter 6, the stress field created by the diapirism of upwelling

asthenosphere material and the magma chamber are calculated.
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The numerical technique of solution of the problem allows
a more realistic shape for the intruding body and magma
chamber to be used.

The stress field resulting from a mantle plume rising
and dispersing under a lithospheric plate is examined in

Chapter 7.
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CHAPTER 2

NUMERICAL SOLUTIONS IN GEODYNAMIC STUDIES

2.1 Introduction

The investigation of geodynamic or geostatic models in
geological science usually involves the solution of
differential equations applying to the continuum mechanics
of the region. The geometry of a region is often complex
with noncontinuity of both material properties and boundary
conditions. Consequently, analytical solutions are either
impossible or involve unrealistic simplifying assumptions.

To overcome these problems and to preserve the detail of the
model, numerical solutions are used. The two most useful and
versatile techniques for the solution of continuum mechanics
problems are the methods of finite element, described below,
and finite difference, described in Chapter 5. Use of these
methods involves the construction of algorithms from the
differential equations and numerical analysis, and subsequent

solution by the use of electronic computers.

2.2 Finite element analysis of an elastic continuum

The finite element method is used in this thesis for

determining the stress and displacement fields of elastic
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continua and it is this application of the method which is

outlined in this chapter. Fundamental properties of the elastic

continuum are described in many books (Fung, 1965; Sokolnikoff,
1956; Jaeger and Cook, 1969) and are not discussed here. The
deformation of the continuum is expressed in terms of the
strain tensor,{i} . Which is related to the vector displace-

ment,{s} , of a point in the continuum by the relationship

Tx J“L/‘)X
€y Ju/39
el =%t - AR 2.1
Ty Syt on
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where {Uo} is the initial stress tensor, {Eo} is the initial

strain tensor and [D] the elasticity matrix. For plane
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where E is Young's modulus and ¥ is Poisson's ratio.



Figure 2.1 Finite element subdivision of a region
showing elements (e) and nodes (n).



The finite element method is described in detail by
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Zienkiewicz (1971) who discusses its formulation and many

uses and it is this formulation by Zienkiewicz which is
followed in this chapter. The region over which the
differential equation of an elastic continuum is to be
solved is divided into a set of subdomains or elements,
which in 2 dimensions, for the most simple case, are
triangular (figure 2.1). The differential equation of
the region is the minimization of the total energy of the
continuum with respect to the elastic displacement: of the

continuum such that

5 70

where\}/is the total elastic energy and{f} is the dis-

placement vector, a spatially dependent function. Elastic

energy,\+/, is the sum of the strain energy and the work

done by external loads on the continuum. This is given by

the relationship.

j ET [0] { } atwon) -J {&}: }d(vol)
J {{ {oo}d(vol) +J {f} {p} d(vol)

{ } d (area)

}1
:

2.5

where {q;} is the vector of distributed boundary forces and

{kp} is the vector of distributed internal forces. Behavi

our
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of the continuum is approximated to that of the system of
elements which are interconnected at their corners or nodes
and the continuum behaviour is represented by the elastic
displacements at these nodes. Formulation of a set of
simultaneous equations yielding the equilibrium nodal
displacement is achieved by expressing the energy in terms
of nodal displacements and then minimizing the energy
according to equation 2.4.

In order to express the energy of the elements in such
a way it is necessary to obtain the element stress and
strain tensors in terms of nodal displacements. If {J} is
the vector of nodal displacements for the whole body and(:N]
is a mapping matrix known as the shape function, the dis-

placement at any point in the body is given by

{f} ~ {‘:} =[N]{J} . 2.6

The shape function [N] is composed of individual
e
shape functions, [N} , from each element, which take the
form for an element with nodes i, j, k
N.O N; O N ©
[~] - 2.7
where

N, = (°LL+\>""' +C Y4 )2

b= 4; -9, 2.8
L= Xk TXxy
XL 49
2A = boxy 9;
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and N and N, are given by cyclic permutation. The strain

J k

at any point in the region may be obtained by the expression

Iy O
{e) L?; j@ﬂ & 2.9
(€) - [2]{8) 210

where [B] is a matrix mapping nodal displacement into strain.

or

Stress is then given by the constitutive equation such that

{0'} = o] ([B] {é} - {Eo} ) + {Qo} : 2.11

From equation 2.5 the energy,\{ , becomes in terms of

nodal displacement

= gJ ( [2] {J}T) o] [&] {é} d(vol) |
- g ( :B] {é}) [D] (fu} d(vol) +f ([B] {é} )T {60} d(vol)
+J ( :NJ{J} )T{p}d(vol) +J ([N] {A})T(g} d (area)

.12

The energy minimization for equilibrium is given by
differentiating the energy with respect to nodal displacement

and results in the fundamental equation of elastic finite

element analysis,

J-[B]T[D] [B] {5} d(vol) - J[_B]T[D] {Eo} d(vol)

+J[B]T{c’o} d(vol) + J [N]T{p} d(vol)
= 17T

+‘(|_NJ {3} d(area) = 0 . 2.13
Using a simplifying notation the nature of the simultaneous

equation may be seen which gives the nodal displacements,
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variations correspond to element boundaries. Nodes of the
subdivided region are numbered in such a way that the maximum
difference of nodal numbers for each element is as small as
possible. This operation produces a banded matrix which
allows more efficient storage of the matrix elements in

the computing method.

This formulation of finite element for elastic stress
analysis is followed in Chapter 6 where the stresses in the
lithosphere caused by the upwelling and intruding asthenosphere
at the ocean ridges are calculated. The computer program

used is listed and explained in appendix 4.

2.3 Viscoelastic finite element analysis

A viscoelastic substance possesses properties which
incorporate both elastic and viscous material behaviour.
These physical properties correspond to those of many rocks,
especially those of the mantle (Stocker and Ashby, 1973)
whose behaviour appears to change from elastic to viscoelastic
with increasing time. For example, the asthenosphere transmits
seismic waves (an elastic process) yet over geological time
appears to behave as a viscous fluid (Heiskanen and Vening
Meinesz, 1958). Strain and stress are a function of time in
a viscoelastic material and the rate of change of strain,
the creep rate, is stress dependent. Creep rates may be

obtained from experimental work on rock samples or from a
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rheological model. The viscoelastic work of this thesis

uses a Maxwell rheological model and the microscopic
behaviour of this material corresponds to that of elastic and
viscous materials in series. Jaeger and Cook (1969)
described the properties of this and other rheological

models together with experimentally determined creep rates.

The strain rate for a Maxwell substance is given by

()} - [5] () + [s] (o) 2.22

where matrix‘is] is a function of viscosity. Dividing the
strain rate into elastic and viscous components, the viscous

{.E}V= [s] {o} 2.23

and in detail the creep components are
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where ©O¢ = 1/3 (g + OB-+<:%) (Jaeger and Cook, 1969; YIH,1969).
The finite element formulation for elastic continuum

analysis may be extended for viscoelastic analysis by using

the concept of initial strain (Zienkiewicz, 1971). The

fundamental equilibrium equation for the viscoelastic finite

element formulation is obtained from equation 2.14 and 2.21
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and is

[K] {A}={R} - (F}io 2.25

where

_{F}Eo =j [B]T [D] ((a} d(vol) 2.26

Creep is incorporated in the calculation as an initial

strain and the stress at any time is given by

(o} = ] ({e} - {g})

The usual objective of viscoelastic analysis is to
study the behaviour of the stress, strain and displacement
of a model with time. Analysis is initiated by an ordinary
elastic solution which gives the elastic stress, strain and
displacement at zero time. The viscoelastic behaviour of
the model is then propagated through time by a series of
time steps in each of which occurs the following sequence

of calculations.

(1) The creep rate for the time step is calculated
from the stress at the end of the previous time

increment.

(2) The creep rate is integrated over the time increment
to give the incremental creep which is then added

to the creep of previous increments.

(3) The total creep is incorporated in the initial

strain vector.
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In Chapter 4 this method is used to calculate the

cooling stresses of the oceanic lithosphere. The computer
program used for the calculation is listed and described

in appendix 2,
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CHAPTER 3

LOAD STRESSES IN THE OCEAN LITHOSPHERE

3.1 Introduction

The topographic high of the ocean ridge and the
associated low density upper mantle which maintains the
isostatic equilibrium (Talwani et al., 1965) gives rise
to lateral density contrasts in the oceanic lithosphere.
Artyushkov (1973) has shown that lateral changes in
density in the lithosphere may lead to regional stress
relative to the expected hydrostatic load stresses. For
the oceanic lithosphere Artyushkov predicted, by analytical
calculation, relative horizontal compressive stresses in
the upper lithosphere which increase from zero at the
ridge axis to about 0.25 kb in the ocean basins. Stephansson
and Berner (1970), using finite element analysis to calculate
the load stresses of a viscous model of the lithosphere,
suggested that the oceanic crust was in horizontal tension
at the ridge axis relative to the hydrostatic and in
compression in the basins. The different conclusions of
these two works is a consequence of the use of different
boundary conditions at the ridge axis in the two models.
While Artyushkov applied a hydrostatic stress boundary
condition to the vertical ridge axis boundary, Stephansson

and Berner used the lateral symmetry of the ridge axis.
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In the following work, the state of stress in the oceanic
lithosphere arising from the density distribution is
investigated by the finite element method of stress
analysis for both types of ridge axis boundary condition.
Both elastic and viscoelastic models of the lithosphere

are examined.

3.2 The lithospheric model

The lithospheric model, selected for the investigation
of lithosphere load stresses, corresponds to the structure
suggested by Talwani et al. (1965) for the mid-Atlantic
ridge at 35°N where the half spreading rate is 1.5 cm/yr.
The density distribution of the model is shown in figure 3.1.
Theoretical lithosphere density distributions (Forsyth and
Press, 1970; Sclater and Francheteau, 1971; Haigh, 1973)
have not been used since they are dependent on assumed
mantle composition. The upper surface of the model,
representing the ocean rise topography, uses the smoothed
topography produced for the N. Atlantic ocean at 35°N by
Haigh (1973b). Densities of the lithospheric model are
consistent with the observed existence of isostatic
equilibrium at the ocean ridges.

The model dimensions are 1400km by 80km. Only one

half of the ocean rise structure is included in the model
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by the assumption of symmetry. For a half spreading rate

of 1.5 cm/yr, the ocean ridge topography decays to that of
the level of the ocean basins at a distance of about 1200 km
from the ridge axis (Haigh, 1973) and the model length of
1400 km is therefore adequate to incorporate the whole

ocean rise structure. The model depth of 80 km is consistent
with the values suggested by Kanamori and Press (1970) and
Haigh (1973). The model assumes a level datum for the
lithosphere-asthenosphere boundary.

Boundary conditions may be applied to the lithosphere
model in the form of prescribed boundary displacements or
stresses. The asthenosphere-lithosphere boundary is
assumed to be a boundary of uniform stress and strain since
it is below the level of lateral density variations and the
lithosphere is in isostatic equilibrium. Consequently the
boundary is constrained for zero vertical displacement.

No displacement constraint is imposed horizontally since
the asthenosphere behaves as a fluid body over geological
time scales (Haskell, 1935; Heiskanen and Vening Meinesz,
1958; Crittenden, 1963). The vertical boundary of the
model at the ocean basin is constrained for zero horizontal
displacement, because of the lateral uniformity in this
region. For the vertical boundary of the model at the

ridge axis, two possibilities for a boundary condition exist
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(a) hydrostatic stress

(b) zero horizontal displacement

The boundary condition of hydrostatic stress at the
ridge axis was used by Artyushkov (1973) and assumes that
the lithosphere at the ridge axis is fluid. This is
substantiated by geochemical evidence for partial melts
and fractionation in the mantle below the ridge crests
(e.g. Kay, Hubbard and Gast, 1970) and seismic evidence,
if the low velocities below the ridge crest (e.g. Talwani
et al., 1965, 1971) are interpreted as indicative of
partial melts. Further evidence exists which suggests
that the asthenosphere may be very close to the ocean
floor at the ridge crests (Forsyth, 1975; Oldenburg, 1975).
The alternative boundary condition (b), used by Stephansson
and Berner (1970), is suggested by the existence of
horizontal symmetry about the ridge axis.

The hydrostatic stress boundary condition applied at
the ridge axis may be modified by the effects of the vertical
flow of the viscous intruding material at the ridge axis.
Such flow would exert shear stresses on the vertical ridge
axis boundary, in addition to the hydrostatic stresses
already described. The effects of the shear stresses are
not, however, considered quantitatively in the following work.

The values of elastic constants used for the different
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regions of the lithosphere are shown in figure 3.1 and
are those used in crustal tilt studies by Beaumont and
Lambert (1972). The stresses in the oceanic lithosphere,
due to density loading, are investigated for both elastic
and viscoelastic models of the oceanic lithosphere.
Although the lithosphere is usually considered as behaving
as an elastic layer, evidence from lithosphere flexure
(Walcott, 1970) indicates that it may behave, at least in
part, as a viscoelastic material. Walcott has suggested
that the purely elastic part of the lithosphere may be of
the order of 20 km thick. The strong temperature dependence
of the viscosity of mantle like material (Stocker and Ashby,
1973) together with the high temperature of the lower
lithosphere and the lithosphere adjacent to the ridge axis
(McKenzie, 1967; Haigh, 1973) gives further support to the
possibility of a viscoelastic lower lithosphere. The
Maxwell viscoelastic element, described in Chapter 2, is
assumed to represent the viscoelastic behaviour of the
oceanic lithosphere. A stress independent viscosity is used
for simplicity. The viscoelastic lithosphere model is
investigated for uniform viscosity and viscosity contrast
between the upper and lower lithosphere.

The approximation is made in all analyses that the

oceanic lithosphere is a stationary body.
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lithosphere which are felt to be unrealistic. Consequently
an elastic lithosphere model, with the zero horizontal
displacement ridge axis boundary condition is not investigated.

In the case of the viscoelastic models of the lithosphere,
the load stresses of the lithosphere are assumed to be given
by the steady state stress equilibrium of a viscoelastic
body and are approximately hydrostatic. The viscoelastic
model of the lithosphere allows both types of ridge axis
boundary condition to be examined. The uniform densities
subtracted from the actual lithosphere densities to give
the density used in the finite element model are the same
as for the elastic lithosphere model.

The subtraction of the uniform densities does not
invalidate the viscoelastic analysis since the viscoelastic
deformation used is only dependent on the deviatoric stress
and not total stress.

The densities used in the finite element analysis of

the lithosphere load stresses are shown in figure 3.2.

3.4 The finite element formulation and application

The finite element method of stress analysis for elastic
and viscoelastic continua has been described in Chapter 2,
where the formulation follows that suggested by Zienkiewicz

(1971). The equilibrium equation giving total deformation
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