13 research outputs found

    Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors

    No full text
    Electrodeposition of iridium oxide layers from soluble precursors provides a route to active thin-layer electrocatalysts for use on water-oxidizing anodes. Certain organometallic half-sandwich aqua complexes of iridium form stable and highly active oxide films upon electrochemical oxidation in aqueous solution. The catalyst films appear as blue layers on the anode when sufficiently thick, and most closely resemble hydrous iridium­(III,IV) oxide by voltammetry. The deposition rate and cyclic voltammetric response of the electrodeposited material depend on whether the precursor complex contains a pentamethylcyclopentadieneyl (Cp*) or cyclopentadienyl ligand (Cp), and do not match, in either case, iridium oxide anodes prepared from non-organometallic precursors. Here, we survey our organometallic precursors, iridium hydroxide, and pre-formed iridium oxide nanoparticles. From electrochemical quartz crystal nanobalance (EQCN) studies, we find differences in the rate of electrodeposition of catalyst layers from the two half-sandwich precursors; however, the resulting layers operate as water-oxidizing anodes with indistinguishable overpotentials and H/D isotope effects. Furthermore, using the mass data collected by EQCN and not otherwise available, we show that the electrodeposited materials are excellent catalysts for the water-oxidation reaction, showing maximum turnover frequencies greater than 0.5 mol O<sub>2</sub> (mol iridium)<sup>−1</sup> s<sup>–1</sup> and quantitative conversion of current to product dioxygen. Importantly, these anodes maintain their high activity and robustness at very low iridium loadings. Our organometallic precursors contrast with pre-formed iridium oxide nanoparticles, which form an unstable electrodeposited material that is not stably adherent to the anode surface at even moderately oxidizing potentials

    Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors

    No full text
    Electrodeposition of iridium oxide layers from soluble precursors provides a route to active thin-layer electrocatalysts for use on water-oxidizing anodes. Certain organometallic half-sandwich aqua complexes of iridium form stable and highly active oxide films upon electrochemical oxidation in aqueous solution. The catalyst films appear as blue layers on the anode when sufficiently thick, and most closely resemble hydrous iridium­(III,IV) oxide by voltammetry. The deposition rate and cyclic voltammetric response of the electrodeposited material depend on whether the precursor complex contains a pentamethylcyclopentadieneyl (Cp*) or cyclopentadienyl ligand (Cp), and do not match, in either case, iridium oxide anodes prepared from non-organometallic precursors. Here, we survey our organometallic precursors, iridium hydroxide, and pre-formed iridium oxide nanoparticles. From electrochemical quartz crystal nanobalance (EQCN) studies, we find differences in the rate of electrodeposition of catalyst layers from the two half-sandwich precursors; however, the resulting layers operate as water-oxidizing anodes with indistinguishable overpotentials and H/D isotope effects. Furthermore, using the mass data collected by EQCN and not otherwise available, we show that the electrodeposited materials are excellent catalysts for the water-oxidation reaction, showing maximum turnover frequencies greater than 0.5 mol O<sub>2</sub> (mol iridium)<sup>−1</sup> s<sup>–1</sup> and quantitative conversion of current to product dioxygen. Importantly, these anodes maintain their high activity and robustness at very low iridium loadings. Our organometallic precursors contrast with pre-formed iridium oxide nanoparticles, which form an unstable electrodeposited material that is not stably adherent to the anode surface at even moderately oxidizing potentials

    Capillary density and caliber as assessed by optical coherence tomography angiography may be significant predictors of diabetic retinopathy severity.

    No full text
    PurposeTo validate retinal capillary density and caliber associations with diabetic retinopathy (DR) severity in different clinical settings.MethodsThis cross-sectional study assessed retinal capillary density and caliber in the superficial retinal layer of 3-mm OCTA scans centered on the fovea. Images were collected from non-diabetic controls and subjects with mild or referable DR (defined DR worse than mild DR) between February 2016 and December 2019 at secondary and tertiary eye care centers. Vessel Skeleton Density (VSD), a measure of capillary density, and Vessel Diameter Index (VDI), a measure of vascular caliber, were calculated from these images. Discriminatory performance of VSD and VDI was evaluated using multivariable logistic regression models predicting DR severity with adjustments for sex, hypertension, and hyperlipidemia. Area under the curve (AUC) was estimated. Model performance was evaluated in two different cohorts.ResultsThis study included 594 eyes from 385 subjects. Cohort 1 was a training cohort of 509 eyes including 159 control, 155 mild non-proliferative DR (NPDR) and 195 referable DR eyes. Cohort 2 was a validation cohort consisting of 85 eyes including 16 mild NPDR and 69 referable DR eyes. In Cohort 1, addition of VSD and VDI to a model using only demographic data significantly improved the model's AUC for discrimination of eyes with any DR severity from controls (0.91 [95% CI, 0.88-0.93] versus 0.80 [95% CI, 0.76-0.83], p ConclusionOCTA-derived capillary density has real world clinical value for rapidly assessing DR severity

    Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors

    No full text
    Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H2O)3]SO4 (1) or [(Cp*Ir)2(OH)3]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidation catalysis than crystalline IrO2 and functions as a remarkably robust catalyst, capable of catalyzing water oxidation without deactivation or significant corrosion for at least 70 h. Elemental analysis reveals that BL contains carbon that is derived from the Cp* ligand ( 3c 3% by mass after prolonged electrolysis). Because the electrodeposition of precursors 1 or 2 gives a highly active catalyst material, and electrochemical oxidation of other iridium complexes seems not to result in immediate conversion to iridium oxide materials, we investigate here the nature of the deposited material. The steps leading to the formation of BL and its structure have been investigated by a combination of spectroscopic and theoretical methods. IR spectroscopy shows that the carbon content of BL, while containing some C-H bonds intact at short times, is composed primarily of components with C=O fragments at longer times. X-ray absorption and X-ray absorption fine structure show that, on average, the six ligands to iridium in BL are likely oxygen atoms, consistent with formation of iridium oxide under the oxidizing conditions. High-energy X-ray scattering (HEXS) and pair distribution function (PDF) analysis (obtained ex situ on powder samples) show that BL is largely free of the molecular precursors and is composed of small, <7 \uc5, iridium oxide domains. Density functional theory (DFT) modeling of the X-ray data suggests a limited set of final components in BL; ketomalonate has been chosen as a model fragment because it gives a good fit to the HEXS-PDF data and is a potential decomposition product of Cp*. \ua9 2013 American Chemical Society
    corecore