103 research outputs found

    Estimating parameters in stochastic systems:a variational Bayesian approach

    Get PDF
    This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods

    Reliability of Bioelectrical Impedance Analysis for Estimating Whole‐Fish Energy Density and Percent Lipids

    Full text link
    We evaluated bioelectrical impedance analysis (BIA) as a nonlethal means of predicting energy density and percent lipids for three fish species: Yellow perch Perca flavescens, walleye Sander vitreus, and lake whitefish Coregonus clupeaformis. Although models that combined BIA measures with fish wet mass provided strong predictions of total energy, total lipids, and total dry mass for whole fish, including BIA provided only slightly better predictions than using fish mass alone. Regression models that used BIA measures to directly predict the energy density or percent lipids of whole fish were generally better than those using body mass alone (based on Akaike’s information criterion). However, the goodness of fit of models that used BIA measures varied widely across species and at best explained only slightly more than one‐half the variation observed in fish energy density or percent lipids. Models that combined BIA measures with body mass for prediction had the strongest correlations between predicted and observed energy density or percent lipids for a validation group of fish, but there were significant biases in these predictions. For example, the models underestimated energy density and percent lipids for lipid‐rich fish and overestimated energy density and percent lipids for lipid‐poor fish. A comparison of observed versus predicted whole‐fish energy densities and percent lipids demonstrated that models that incorporated BIA measures had lower maximum percent error than models without BIA measures in them, although the errors for the BIA models were still generally high (energy density: 15‐18%; percent lipids: 82‐89%). Considerable work is still required before BIA can provide reliable predictions of whole‐fish energy density and percent lipids, including understanding how temperature, electrode placement, and the variation in lipid distribution within a fish affect BIA measures.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141722/1/tafs1519.pd

    Identification of Lineage-Uncommitted, Long-Lived, Label-Retaining Cells in Healthy Human Esophagus and Stomach, and in Metaplastic Esophagus

    Get PDF
    Background & Aims The existence of slowly cycling, adult stem cells has been challenged by the identification of actively cycling cells. We investigated the existence of uncommitted, slowly cycling cells by tracking 5-iodo-2'-deoxyuridine (IdU) label-retaining cells (LRCs) in normal esophagus, Barrett's esophagus (BE), esophageal dysplasia, adenocarcinoma, and healthy stomach tissues from patients. Methods Four patients (3 undergoing esophagectomy, 1 undergoing esophageal endoscopic mucosal resection for dysplasia and an esophagectomy for esophageal adenocarcinoma) received intravenous infusion of IdU (200 mg/m2 body surface area; maximum dose, 400 mg) over a 30-minute period; the IdU had a circulation half-life of 8 hours. Tissues were collected at 7, 11, 29, and 67 days after infusion, from regions of healthy esophagus, BE, dysplasia, adenocarcinoma, and healthy stomach; they were analyzed by in situ hybridization, flow cytometry, and immunohistochemical analyses. Results No LRCs were found in dysplasias or adenocarcinomas, but there were significant numbers of LRCs in the base of glands from BE tissue, in the papillae of the basal layer of the esophageal squamous epithelium, and in the neck/isthmus region of healthy stomach. These cells cycled slowly because IdU was retained for at least 67 days and co-labeling with Ki-67 was infrequent. In glands from BE tissues, most cells did not express defensin-5, Muc-2, or chromogranin A, indicating that they were not lineage committed. Some cells labeled for endocrine markers and IdU at 67 days; these cells represented a small population (<0.1%) of epithelial cells at this time point. The epithelial turnover time of the healthy esophageal mucosa was approximately 11 days (twice that of the intestine). Conclusions LRCs of human esophagus and stomach have many features of stem cells (long lived, slow cycling, uncommitted, and multipotent), and can be found in a recognized stem cell niche. Further analyses of these cells, in healthy and metaplastic epithelia, is required

    GIT2 Acts as a Potential Keystone Protein in Functional Hypothalamic Networks Associated with Age-Related Phenotypic Changes in Rats

    Get PDF
    The aging process affects every tissue in the body and represents one of the most complicated and highly integrated inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has demonstrated that the optimal regulation of energy usage in both these systems facilitates healthy aging. However, the proteomic effects of aging in regions of the brain vital for integrating energy balance and neuronal activity are not well understood. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity. Therefore, a greater understanding of the effects of aging in the hypothalamus may reveal important aspects of overall organismal aging and may potentially reveal the most crucial protein factors supporting this vital signaling integration. In this study, we examined alterations in protein expression in the hypothalami of young, middle-aged, and old rats. Using novel combinatorial bioinformatics analyses, we were able to gain a better understanding of the proteomic and phenotypic changes that occur during the aging process and have potentially identified the G protein-coupled receptor/cytoskeletal-associated protein GIT2 as a vital integrator and modulator of the normal aging process

    An open-label, multicenter evaluation of the long-term safety and efficacy of risperidone in adolescents with schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data on the long-term efficacy, safety, and tolerability of risperidone in adolescents with schizophrenia are limited. The objective of this study was to evaluate the efficacy and safety of maintenance risperidone treatment in adolescents with schizophrenia.</p> <p>Methods</p> <p>This open-label study of adolescents aged 13 to 17 years with schizophrenia was a single extension study of two short-term double-blind risperidone studies and also enrolled subjects directly in open-label risperidone treatment. The risperidone dose was flexible and ranged from 2 to 6 mg/day. Most subjects enrolled for 6 months; a subset enrolled for 12 months. Assessment tools included the Positive and Negative Syndrome Scale total and factor scores, Clinical Global Impressions, Children’s Global Assessment Scale, adverse event (AE) monitoring, vital signs, laboratory testing, and extrapyramidal symptom rating scales.</p> <p>Results</p> <p>A total of 390 subjects were enrolled; 48 subjects had received placebo in a previous double-blind study; 292 subjects had received risperidone as part of their participation in one of two previous controlled studies; and 50 subjects were enrolled directly for this study. A total of 279 subjects enrolled for 6 months of treatment, and 111 subjects enrolled for 12 months of treatment. Overall, 264 (67.7%) subjects completed this study: 209 of the 279 subjects (75%) in the 6-month group and 55 of the 111 subjects (50%) in the 12-month group. The median mode dose was 3.8 mg/day. At 6 months, all three groups experienced improvement from open-label baseline in symptoms of schizophrenia as well as general assessments of global functioning. Improvements were generally maintained for the duration of treatment. The most common AEs (≥10% of subjects) were somnolence, headache, weight increase, hypertonia, insomnia, tremor, and psychosis. Potentially prolactin-related AEs (PPAEs) were reported by 36 (9%) subjects. The AE profile in this study was qualitatively similar to those of other studies in adult subjects with schizophrenia and in other psychiatric studies of risperidone in pediatric populations.</p> <p>Conclusions</p> <p>Risperidone maintenance treatment in adolescents over 6 to 12 months was well tolerated, consistent with related studies in this clinical population, and associated with continued efficacy.</p> <p>Clinical trials</p> <p>ClinicalTrials.gov registration number: NCT00246285 <url>http://clinicaltrials.gov/ct2/show/NCT00246285?term=NCT00246285&rank=1</url></p
    corecore