95 research outputs found
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
Operations of and Future Plans for the Pierre Auger Observatory
Technical reports on operations and features of the Pierre Auger Observatory,
including ongoing and planned enhancements and the status of the future
northern hemisphere portion of the Observatory. Contributions to the 31st
International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Trigger and Aperture of the Surface Detector Array of the Pierre Auger Observatory
The surface detector array of the Pierre Auger Observatory consists of 1600
water-Cherenkov detectors, for the study of extensive air showers (EAS)
generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy,
from the identification of candidate showers at the level of a single detector,
amongst a large background (mainly random single cosmic ray muons), up to the
selection of real events and the rejection of random coincidences. Such trigger
makes the surface detector array fully efficient for the detection of EAS with
energy above eV, for all zenith angles between 0 and
60, independently of the position of the impact point and of the mass
of the primary particle. In these range of energies and angles, the exposure of
the surface array can be determined purely on the basis of the geometrical
acceptance.Comment: 29 pages, 12 figure
Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory
We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 â 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 â 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.We are very grateful to the following agencies and organizations for financial support,: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La, Provincia de Ailendoza. Municipalidad de Malargile. INDM floldings and Valle Las Lenas, in gratitude for their continuing cooperation over land access. Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e 'Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacdo de Amparo a Pesquisa do Est ado de Rio de Janeiro (FAP HRJ), Fundacdo de Amparo Pesquisa do Estado de Sdo Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (IVICT), Brazil; AVCR AVOZ10100502 and AVOZ10100522, GAAV KJB100100904, AISMT-CR LA08016, LG11044, 1VIEB111003, MSAI0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul I-N2P3/CNRS, Centre National de la -Recherche Scientifique ((1 NRS), Conseil Regional Ile-de-France, f)epartement, Physique Nuclealre et Corpusculaire (I N( Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DITG), Finanzministerium Baden-Wurttemberg, flelmholtz-Gemeinschaft Deutscher Forschungszentren Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerimn fur Wissenschaft, Forschung und Kunst, Baden-WUrttemberg, Germany; Istituto Nazion ale di Fisica Nucleare (INFN), Ministero dell'Istruzione, delhLniversita e della Ricerca (MIUR), Italy: Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onden s Cultuur on NVetenschap Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Rmdamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISETD1 partnership projects nr.20/2012 and nr.194/2012, project nr.1 /ASPERA2/20I2 ERA-NET and PN-IIRU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and 'Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (( PAN), X unta de Galicia Spain; Science and Technology Facilities Council, United kingdom; Department of Luergy, Contract Nos. DE-ACO2-07(11-111359, DE-FR02-04E1(41300, DE-FG02-99E1(41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/HPLANET, European Particle Physics Latin American Network, European Union 7th Frarneworlc Program. Grant No. IIRSES-2009-GA-246806; and UNESCO.Peer reviewe
The Pierre Auger Observatory IV: Operation and Monitoring
Technical reports on operations and monitoring of the Pierre Auger
ObservatoryComment: Constributions to 32nd International Cosmic Ray Conference, Beijing,
China, August 201
The Pierre Auger Observatory II: Studies of Cosmic Ray Composition and Hadronic Interaction models
Studies of the composition of the highest energy cosmic rays with the Pierre
Auger Observatory, including examination of hadronic physics effects on the
structure of extensive air showers.Comment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Identifying clouds over the Pierre Auger Observatory using infrared satellite data
We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.The successful installation, commissioning, and operation of the
Pierre Auger Observatory would not have been possible without
the strong commitment and effort from the technical and adminis-
trative staff in MalargĂŒe.
We are very grateful to the following agencies and organiza-
tions for financial support: ComisiĂłn Nacional de EnergĂa AtĂłmica,
FundaciĂłn Antorchas, Gobierno De La Provincia de Mendoza,
Municipalidad de MalargĂŒe, NDM Holdings and Valle Las Leñas,
in gratitude for their continuing cooperation over land access,
Argentina; the Australian Research Council; Conselho Nacional de
Desenvolvimento CientĂfico e TecnolĂłgico (CNPq), Financiadora
de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do
Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa
do Estado de SĂŁo Paulo (FAPESP), MinistĂ©rio de CiĂȘncia e Tecnolo-
gia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV
KJB100100904, MSMT-CR LA08016, LG11044, MEB111003,
MSM0021620859, LA08015, TACR TA01010517 and GA UK
119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre Na-
tional de la Recherche Scientifique (CNRS), Conseil RĂ©gional Ile-de-
France, Département Physique Nucléaire et Corpusculaire (PNC-
IN2P3/CNRS), DĂ©partement Sciences de lâUnivers (SDU-INSU/
CNRS), France; Bundesministerium fĂŒr Bildung und Forschung
(BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministeri-
um Baden-WĂŒrttemberg, Helmholtz-Gemeinschaft Deutscher
Forschungszentren (HGF), Ministerium fĂŒr Wissenschaft und
Forschung, Nordrhein-Westfalen, Ministerium fĂŒr Wissenschaft,
Forschung und Kunst, Baden-WĂŒrttemberg, Germany; Istituto
Nazionale di Fisica Nucleare (INFN), Ministero dellâIstruzione,
dellâUniversitĂ e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y TecnologĂa (CONACYT), Mexico; Ministerie van Ond-
erwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wet-
enschappelijk Onderzoek (NWO), Stichting voor Fundamenteel
Onderzoek der Materie (FOM), Netherlands; Ministry of Science
and Higher Education, Grant Nos. N N202 200239 and N N202
207238, Poland; Portuguese national funds and FEDER funds with-
in COMPETE - Programa Operacional Factores de Competitividade
through Fundação para a CiĂȘncia e a Tecnologia, Portugal; Roma-
nian Authority for Scientific Research ANCS, CNDI-UEFISCDI part-
nership projects nr.20/2012 and nr.194/2012, project nr.1/
ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Roma-
nia; Ministry for Higher Education, Science, and Technology, Slove-
nian Research Agency, Slovenia; Comunidad de Madrid, FEDER
funds, Ministerio de Ciencia e InnovaciĂłn and Consolider-Ingenio
2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation,
Science and Technology Facilities Council, United Kingdom;
Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-
FR02-04ER41300, DE-FG02-99ER41107, National Science Founda-
tion, Grant No. 0450696, The Grainger Foundation USA; NAFO-
STED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle
Physics Latin American Network, European Union 7th Framework
Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
We would like to thank the former Michigan Tech students:
Nathan Kelley-Hoskins, Kyle Luck and Arin Nelson for their impor-
tant contribution to the development of this paper. We would like
to thank NOAA for the GOES satellite data that we freely down-
loaded from their website. Also, we would like to mention in these
acknowledgments Dr. Steve Ackerman and Dr. Tony Schreiner for
very valuable conversationsPeer reviewe
- âŠ