46 research outputs found
Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest
Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation
How to calculate the dose of chemotherapy
Body surface area-dosing does not account for the complex processes of cytotoxic drug elimination. This leads to an unpredictable variation in effect. Overdosing is easily recognised but it is possible that unrecognised underdosing is more common and may occur in 30% or more of patients receiving standard regimen. Those patients who are inadvertently underdosed are at risk of a significantly reduced anticancer effect. Using published data, it can be calculated that there is an almost 20% relative reduction in survival for women receiving adjuvant chemotherapy for breast cancer as a result of unrecognised underdosing. Similarly, the cure rate of cisplatin-based chemotherapy for advanced testicular cancer may be reduced by as much as 10%. The inaccuracy of body surface area-dosing is more than an inconvenience and it is important that methods for more accurate dose calculation are determined, based on the known drug elimination processes for cytotoxic chemotherapy. Twelve rules for dose calculation of chemotherapy are given that can be used as a guideline until better dose-calculation methods become available. Consideration should be given to using fixed dose guidelines independent of body surface area and based on drug elimination capability, both as a starting dose and for dose adjustment, which may have accuracy, safety and financial advantages
DHA Supplemented in Peptamen Diet Offers No Advantage in Pathways to Amyloidosis: Is It Time to Evaluate Composite Lipid Diet?
Numerous reports have documented the beneficial effects of dietary docosahexaenoic acid (DHA) on beta-amyloid production and Alzheimer's disease (AD). However, none of these studies have examined and compared DHA, in combination with other dietary nutrients, for its effects on plaque pathogenesis. Potential interactions of DHA with other dietary nutrients and fatty acids are conventionally ignored. Here we investigated DHA with two dietary regimes; peptamen (pep+DHA) and low fat diet (low fat+DHA). Peptamen base liquid diet is a standard sole-source nutrition for patients with gastrointestinal dysfunction. Here we demonstrate that a robust AD transgenic mouse model shows an increased tendency to produce beta-amyloid peptides and amyloid plaques when fed a pep+DHA diet. The increase in beta-amyloid peptides was due to an elevated trend in the levels of beta-secretase amyloid precursor protein (APP) cleaving enzyme (BACE), the proteolytic C-terminal fragment beta of APP and reduced levels of insulin degrading enzyme that endoproteolyse beta-amyloid. On the contrary, TgCRND8 mice on low fat+DHA diet (based on an approximately 18% reduction of fat intake) ameliorate the production of abeta peptides and consequently amyloid plaques. Our work not only demonstrates that DHA when taken with peptamen may have a tendency to confer a detrimental affect on the amyloid plaque build up but also reinforces the importance of studying composite lipids or nutrients rather than single lipids or nutrients for their effects on pathways important to plaque development
Predicting range shifts of African apes under global change scenarios
Aim:
Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap.
Location:
Tropical Africa.
Methods:
We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting.
Results
The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap.
Main Conclusions:
Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad
Recommended from our members
COVID-19, systemic crisis, and possible implications for the wild meat trade in sub-Saharan Africa
Wild animals play an integral and complex role in the economies and ecologies of many
countries across the globe, including those of West and Central Africa, the focus of this
policy perspective. The trade in wild meat, and its role in diets, have been brought into
focus as a consequence of discussions over the origins of COVID-19. As a result, there
have been calls for the closure of China’s “wet markets”; greater scrutiny of the wildlife
trade in general; and a spotlight has been placed on the potential risks posed by growing human populations and shrinking natural habitats for animal to human transmission of
zoonotic diseases. However, to date there has been little attention given to what the consequences of the COVID-19 economic shock may be for the wildlife trade; the people who
rely on it for their livelihoods; and the wildlife that is exploited. In this policy perspective,
we argue that the links between the COVID-19 pandemic, rural livelihoods and wildlife
are likely to be more complex, more nuanced, and more far-reaching, than is represented in
the literature to date. We develop a causal model that tracks the likely implications for the
wild meat trade of the systemic crisis triggered by COVID-19. We focus on the resulting
economic shockwave, as manifested in the collapse in global demand for commodities such
as oil, and international tourism services, and what this may mean for local African economies and livelihoods. We trace the shockwave through to the consequences for the use
of, and demand for, wild meats as households respond to these changes. We suggest that
understanding and predicting the complex dynamics of wild meat use requires increased
collaboration between environmental and resource economics and the ecological and conservation sciences
Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.
Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs
Population status of Pan troglodytes verus in Lagoas de Cufada Natural Park, Guinea-Bissau
The western chimpanzee, Pan troglodytes verus, has been classified as Endangered on the IUCN Red List since 1988. Intensive agriculture, commercial plantations, logging, and mining have eliminated or degraded the habitats suitable for P. t. verus over a large part of its range. In this study we assessed the effect of land-use change on the population size and density of chimpanzees at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau. We further explored chimpanzee distribution in relation to landscape-level proxies of human disturbance. Nest count and distance-sampling methods were employed along 11 systematically placed linear transects in 2010 and 2011. Estimated nest decay rate was 293.9 days (%CV = 58.8). Based on this estimate of decay time and using the Standing-Crop Nest Count Method, we obtained a habitat-weighted average chimpanzee density estimate for 2011 of 0.22 nest building chimpanzees/km2 (95% CI 0.08–0.62), corresponding to 137 (95% CI 51.0–390.0) chimpanzees for LCNP. Human disturbance had a negative influence on chimpanzee distribution as nests were built farther away from human settlements, roads, and rivers than if they were randomly distributed, coinciding with the distribution of the remaining patches of dense canopy forest. We conclude that the continuous disappearance of suitable habitat (e.g. the replacement of LCNP's dense forests by monocultures of cashew plantations) may be compromising the future of one of the most threatened Guinean coastal chimpanzee populations. We discuss strategies to ensure long-term conservation in this important refuge for this chimpanzee subspecies at its westernmost margin of geographic distribution.Publisher PDFPeer reviewe