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Abstract
Aim: Modelling African great ape distribution has until now focused on current or 
past conditions, while future scenarios remain scarcely explored. Using an ensem-
ble forecasting approach, we predicted changes in taxon-specific distribution under 
future scenarios of climate, land use and human populations for (1) areas outside 
protected areas (PAs) only (assuming complete management effectiveness of PAs), 
(2) the entire study region and (3) interspecies range overlap.
Location: Tropical Africa.
Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN 
A.P.E.S. database and extracted relevant climate-, habitat- and human-related pre-
dictors representing current and future (2050) conditions to predict taxon-specific 
range change under a best- and a worst-case scenario, using ensemble forecasting.
Results: The predictive performance of the models varied across taxa. Synergistic 
interactions between predictors are shaping African ape distribution, particularly 

Editor: Juliano Sarmento Cabral  

mailto:joana.coleoptera@gmail.com
mailto:kuehl@eva.mpg.de


     |  3CARVALHO et al.

human-related variables. On average across taxa, a range decline of 50% is expected 
outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). 
Otherwise, an 85% range reduction is predicted to occur across study regions (94% 
worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 
21% worst), with a slight increase in gains expected across study regions (66% best, 
24% worst). Moreover, more than half of range losses and gains are predicted to occur 
outside PAs where interspecific ranges overlap.
Main Conclusions: Massive range decline is expected by 2050, but range gain is un-
certain as African apes will not be able to occupy these new areas immediately due 
to their limited dispersal capacity, migration lag and ecological constraints. Given that 
most future range changes are predicted outside PAs, Africa's current PA network is 
likely to be insufficient for preserving suitable habitats and maintaining connected 
ape populations. Thus, conservation planners urgently need to integrate land use 
planning and climate change mitigation measures at all decision-making levels both in 
range countries and abroad.

K E Y W O R D S

bonobo, chimpanzee, climate change, gorilla, great ape, human population scenarios, IUCN 
SSC A.P.E.S. database, land use change, protected areas, species distribution modelling

1  | INTRODUC TION

Currently, a major conservation challenge is to assess the poten-
tial future effects of climate and land use changes on species dis-
tributions, typically through the use of species distribution models 
(SDMs) and usually under a range of future environmental scenar-
ios. SDMs are widely used to predict and map species’ ecological 
niches through time and space (Elith & Leathwick, 2009; Guillera-
Arroita et al., 2015; Hao et al., 2019). Importantly, SDMs can inform 
spatial prioritization decisions for conservation and management 
actions, such as identification of strategic locations for new conser-
vation or survey sites, and predicting future distributions (Araújo & 
New, 2007; Elith & Leathwick, 2009; Guillera-Arroita et al., 2015).

Changes in climate and land use are among the main global 
threats to biodiversity, and therefore, how the synergistic interac-
tions between these drivers impact species are an important area of 
research (Oliver & Morecroft, 2014). Newbold (2018) assessed the 
single and combined effects of future climate and land use change 
on local vertebrate biodiversity. They found that climate change 
is likely to be the principal driver of species range change in com-
ing decades, equalling or surpassing the potential effects of land 
use change by 2070. Similar results were reported for orangutans 
(Struebig et al., 2015). Because human population growth is already 
an extinction threat to many species (McKee et al., 2013), it is also 
important to determine how human distribution will impact future 
species presence (Jones & O’Neill, 2016).

Many primates are facing imminent extinction, due to the direct 
impact of extensive habitat loss and fragmentation, land use change 
and hunting, and indirect effects linked to global commodity growth 

and trade (Estrada et  al.,  2018). Climate change is a delocalized, 
multi-faceted driver to add to the list. It exposes many species, espe-
cially forest-dwelling primates, to climatically unsuitable conditions 
(Carvalho et al., 2019). Primates have relatively limited dispersal abil-
ities for their slow reproduction, low population densities, dietary 
requirements and poor thermoregulation, and a predicted reduction 
of up to 86% of Neotropical primate ranges with >3°C warming is 
likely to constrain their dispersal, resulting in elevated risks of ex-
tinction (Carvalho et al., 2019).

All African great apes (hereafter African apes) are classified ei-
ther as Endangered (mountain gorillas Gorilla beringei beringei, bono-
bos Pan paniscus, Nigeria-Cameroon chimpanzees Pan troglodytes 
ellioti, eastern chimpanzees P.  t.  schweinfurthii and central chim-
panzees P. t. troglodytes) or Critically Endangered (Grauer's gorillas 
G. b. graueri, Cross River gorillas Gorilla gorilla diehli, western lowland 
gorillas G. g. gorilla and western chimpanzees P. t. verus) on the IUCN 
Red List of Threatened Species (www.iucnr​edlist.org) and are re-
garded as flagship species for conservation. African apes have faced 
dramatic changes in suitable environmental conditions over the past 
20 years (Junker et al., 2012) as well as large population losses (Kuehl 
et  al.,  2017; Plumptre et  al.,  2016; Strindberg et  al.,  2018) caused 
by human activities and/or infectious epidemics (Walsh et al., 2003). 
Many African apes live in areas that are suitable for agricultural ex-
pansion and 58.7% of oil palm concessions currently overlap with 
African ape ranges (Wich, Garcia-Ulloa, Kühl, et al., 2014). Moreover, 
massive development corridors (Heinicke et  al.,  2019) and mining 
activities (Howard,  2019) in their geographic ranges are projected 
to expand considerably and to disrupt ape habitat connectivity and 
accelerate habitat loss.

http://www.iucnredlist.org
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Most African apes occur outside protected areas (PAs) (Freeman 
et  al.,  2018; Heinicke et  al.,  2019; Strindberg et  al.,  2018; Wich, 
Garcia-Ulloa, Kühl, et al., 2014). Importantly, PAs will not be exempt 
from climate change (Araújo et al., 2011), and shifts in species range 
as predicted by future scenarios would certainly determine the de-
gree of species representation inside and outside PAs. Improving the 
effectiveness of conservation efforts inside and outside PAs as well as 
habitat connectivity would allow apes to disperse to new climatically 
suitable areas, and favour ape population survival in the long term.

The influence of the combined effects of current climate con-
ditions and anthropogenic disturbances on African ape distribution 
have been widely explored (Clee et  al.,  2015; Hickey et  al.,  2013; 
Junker et al., 2012; Plumptre et al., 2016; Strindberg et al., 2018). In 
contrast, few studies have only examined future effects of climate 
change (Clee et al., 2015; Lehmann et al., 2010; Thorne et al., 2013) 
or human disturbances (Wich, Garcia-Ulloa, Kühl, et al., 2014), but 
how future synergistic interactions among climate, land use and 
human population changes will affect African apes and their habitat 
has been largely unexplored.

Here, we combine data on projected climate, land use and human 
population changes to model taxon-specific distribution of African 
apes for the year 2050. We use the most comprehensive data-
base on ape populations available, the IUCN SSC Ape Populations, 
Environments and Surveys database (A.P.E.S.) to predict the distri-
bution of great apes on the African continent under best- and worst-
case scenarios. We subsequently employ an ensemble forecasting 
approach to reduce the uncertainty among different models and 
future scenarios (Araújo & New, 2007; Thuiller, 2004) and estimate 
the proportional change in range size in 2050 relative to current es-
timated range sizes for African apes by considering (1) only areas 
outside PAs by assuming complete effectiveness of PA management 
and consequently complete range stability within PAs, (2) the en-
tire study region and (3) interspecies range overlap. Specifically, we 
addressed the following questions: (a) What is the extent of range 
loss by 2050? and (b) What is the proportion of new range predicted 
under future scenarios? Given that range loss and gain occur at dif-
ferent time scales, we predict that massive range loss is likely to 
occur in the next 30 years, but range gain is more uncertain given 
that African apes will not be able to occupy these new areas imme-
diately due to their limited dispersal capacity (Schloss et al., 2012), 
migration lag and ecological constraints.

2  | METHODS

2.1 | African ape data

We compiled information on African ape occurrence held in the IUCN 
SSC A.P.E.S. database, a repository that includes a remarkable amount 
of information on population status, threats and conservation for sev-
eral hundred sites (Heinicke et al., 2019). We extracted all occurrence 
data, which are georeferenced point data of direct sightings and great 
ape signs (mostly night nests) collected over 20 years (1998–2017). 

We obtained a total of 62,469 presence records across all (sub)spe-
cies (hereafter taxon) (Appendix S1 in Supporting Information, Table 
S1.1). We first checked the spatial autocorrelation of these records 
using Ripley's K-function (spatstat package; Baddeley et al., 2015) in 
R version 4.0.2 (R Development Core Team, 2020) and then rarefied 
the presence data by removing those points within a certain distance 
of one another (ecospat package; Di Cola et  al.,  2017), resulting in 
5,203 presence records (Fig. S1.1, Table S1.1).

Although these data may be spatially biased as sampling effort is 
unevenly spread over the ape ranges, presence-only data are com-
monly the most available and hence most frequently used in SDMs 
(Phillips et  al.,  2009). The taxon occurrence data we used were 
collected during systematic site-based wildlife and human impact 
surveys, often in or close to PAs, Forest Stewardship Council (FSC)-
certified and other logging concessions, or from habituated popula-
tions. Those surveys were generally based on some prior knowledge 
of occurrence which can distort an SDM (Phillips et  al.,  2009). 
Different approaches have been applied to account for biased data-
sets: random background, bias background, geographic thinning/
filtering and environmental filtering (Aiello-Lammens et  al.,  2015; 
Fourcade et al., 2014; Phillips et al., 2009; Varela et al., 2014). Thus, 
we considered all approaches, and we included distances to roads, 
villages and PAs for the bias background as they are known to in-
fluence the distribution of African apes (Carvalho et al., 2013). We 
extracted data on roads and villages (from http://sedac.ciesin.colum​
bia.edu/) and PAs (from https://www.prote​ctedp​lanet.net/) within 
each taxon's range. For each taxon, we selected the approach with 
the best performance by visually inspecting the greatest overlap 
between taxon occurrence and each sampling bias layer (Fig. S1.2). 
Given that the geographic thinning approach performed best for all 
taxa, we integrated it into the SDMs for sampling bias correction 
(Fig. S1.2, Table S1.1). We also checked the spatial autocorrelation of 
this bias layer using Ripley's K-function (Fig. S1.1).

We delineated taxon-specific study regions to avoid unrealistic 
geographical predictions (Anderson & Gonzalez,  2011). For this, 
we created buffers bounding IUCN range polygons (IUCN (2020)) 
and including all occurrence data for each taxon (Table S1.1) (Jantz 
et al., 2016; Junker et al., 2012; Thorne et al., 2013). We defined the 
size of each buffer according to the range size of each taxon (Table 
S1.1). Whenever the buffer overlapped with a known geographic 
barrier to ape dispersal (e.g. major rivers), we disregarded that area.

Model algorithms require presence and absence data, so we 
randomly generated a set of 10,000 pseudo-absence occurrences 
(Barbet-Massin et  al.,  2012; Guillera-Arroita et  al.,  2015; Phillips 
et  al.,  2009) within the study region of each taxon, except for G. 
b. beringei. Only 1,000 background occurrences were created for 
mountain gorillas due to their small range.

2.2 | Predictor variables

We selected predictor variables based on their importance for 
African ape ecology (Clee et al., 2015; Lehmann et al., 2010), while 

http://sedac.ciesin.columbia.edu/
http://sedac.ciesin.columbia.edu/
https://www.protectedplanet.net/
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guaranteeing data availability for current and future (2050) condi-
tions under best- and worst-case scenarios and minimizing cor-
relation between variables. We compiled the following climatic 
variables for present and future conditions from Worldclim (periods 
of 1950–2000 and 2050, respectively; Hijmans et al., 2005): annual 
mean temperature (bio1), maximum temperature (bio5), annual pre-
cipitation (bio12) and precipitation seasonality (bio15). For future 
predictions, we chose a best scenario (i.e. high mitigation scenario, 
CCSM4 RCP 4.5) and a worst scenario (i.e. low mitigation scenario, 
HadGEM-ES RCP 8.5; for more details see Carvalho et  al.,  2019). 
Land use/cover data for current conditions and 2050 projections 
were compiled from the Land use Harmonization Project (period of 
1500–2100; Table S1.1; Chini et al., 2014; Hurtt et al., 2011). This 
dataset represents a set of land use change and emission scenarios 
for studies of human impact on the past and future global carbon-
climate system. Again, we considered a best scenario (MiniCam RCP 
4.5) and a worst scenario (MESSAGE RCP 8.5) (Carvalho et al., 2019). 
We focused on the land use states that best represent land cover 
types where great apes can be found: primary land (i.e. natural vege-
tation, either forest or non-forest, undisturbed by humans), second-
ary land (i.e. natural vegetation previously disturbed by agriculture 
or wood harvesting) and cropland.

We based human population scenarios on a new set of future 
societal development scenarios, namely Shared Socioeconomic 
Pathways (SSP) (Jones & O’Neill, 2016). These future scenarios are 
based on both qualitative narratives of future development and 
quantitative projections of key elements such as human population 
growth at the national level, educational composition, urbanization 
and economic growth. These data are available from 2010 to 2100 
for urban and rural populations. We used two future scenarios, 
SSP1 and SSP3, given that they represent best and worst scenarios, 
respectively.

Firstly, we extracted all variables for the extent of the study 
region of each taxon, resampled onto a 5km x 5km equal-area grid 
and transformed them into the WGS 1984 geographic coordinate 
system. Secondly, for each taxon, we computed and visualized a 
Pearson correlation matrix to assess the collinearity among variables 
(Fig. S1.3). To overcome existing issue with multicollinearity, we used 
a principal component analysis (PCA) instead of the original set of 
environmental variables (De Marco & Nóbrega, 2018). For that, we 
considered both present and future conditions to perform a PCA for 
each taxon and then used PCA loadings for each scenario to create 
PCA-derived variables. Finally, we selected the loadings of the first 
four PCA axes because they explained more than 79% of variance 
(Table S1.2). We performed data analyses using the software R and 
ArcMap version 10.7.1 (ESRI, 2011).

2.3 | SDM performance and ensemble forecasting

We predicted future African ape distributions using an ensemble 
forecasting approach (i.e. combining predictions from individual 
models into an ensemble as implemented in the biomod2 package; 

Thuiller et al., 2016). We selected two correlative algorithms, gen-
eralized linear model (GLM) and generalized additive model (GAM), 
and three machine-learning techniques, Maxent, random forest (RF) 
and artificial neural networks (ANN) to build predictive SDMs for 
each species. These algorithms have been shown to perform well in 
previous SDMs (Elith et al., 2006; Thuiller et al., 2009). We decided 
to keep the default settings of “biomod2” for each algorithm to avoid 
an overwhelming complexity of the study outcomes and for ease of 
comparison between taxa.

For the present time period only, we assessed the predictive 
performance of each model through cross-validation using a boot-
strap approach, that is partitioning of the presence data, using 80% 
of presences, randomly selected, for model calibration and 20% 
for evaluation, and repeating this procedure five times (Thuiller 
et al., 2009). We evaluated the performance of each model by the 
“true skill statistic” metric (TSS) (Allouche et  al.,  2006). TSS is an 
accuracy measure that accounts both for omission errors (i.e. the 
percentage of true presences predicted as absences are minimized) 
and commission errors (i.e. the percentage of true absences pre-
dicted as presences are minimized), is affected by prevalence (Leroy 
et  al.,  2018; Somodi et  al.,  2017) and ranges from −1 to 1, with a 
prediction accuracy considered similar to “random” when ≤0, “poor” 
in the range 0.2–0.5, “useful” in the range 0.6–0.8 and “good” to “ex-
cellent” when >0.8 (Allouche et al., 2006).

Ensemble forecasting has been widely employed to reduce the 
uncertainties associated with using a single algorithm and is a useful 
method to account for uncertainties of extrapolation of species–
environment relationships outside the environments sampled by 
the species data (Araújo & New,  2007; Hao et  al.,  2019; Thuiller 
et al., ,2009, 2019). We chose to apply the weighted mean ensem-
ble method, which scales predictions of different models by weights 
based on some measure of predictive performance (Araújo & 
New, 2007; Thuiller et al., 2009). We included only individual models 
that reached at least “useful” predictive accuracies (TSS>0.7) in en-
semble models whenever possible (except for G. b. graueri, G. g. go-
rilla and P. t. troglodytes TSS>0.5; P. paniscus and P. t. verus TSS>0.6), 
to map the current and future range predicted for each taxon 
(Thuiller et al., 2019). For each modelling approach, we repeated the 
modelling five times (cross-validation) and given the five modelling 
algorithms and the three repetitions for variable importance (see 
below), we obtained an ensemble of 75 predicted distributions for 
each taxon for each time period (present and 2050) and future sce-
narios (best and worst scenarios).

2.4 | Relative importance of PCA-derived variables

For each taxon, we calculated the importance of PCA-derived vari-
ables by correlating the fitted values of the full models with those 
from the model in which the values of the PCA-derived variables 
were randomly permuted. We repeated this procedure three times 
(default settings of “biomod2” were used) and used the aver-
age Pearson's correlation to measure variable importance. A high 
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correlation between the values from the full and permuted models 
indicates that the PCA-derived variable has a low importance, con-
tributing poorly to the model. We then ranked each PCA-derived 
variable value based on the correlation coefficients and reversed its 
relative importance and scaled from 0 to 1, the more influential PCA-
derived variables for the model representing those with a higher 
relative importance (Thuiller et  al., 2009). By identifying the most 
influential PCA-derived variable for the model, we further selected 
the original variables with the strongest loading (i.e. >|0.4|) to bet-
ter describe the most important variables influencing each taxon's 
distribution.

2.5 | Species range change

For each taxon, we estimated the proportional change in range size, 
in 2050 compared to the present, by subtracting the future predic-
tion ensemble output from the SDMs for the best and worst sce-
narios from that under current conditions. Firstly, we considered as 
a cut-off the maximum value of TSS to create binary predictive out-
puts from ensemble models (Thuiller et al., 2019). Secondly, we iden-
tified areas of range loss (i.e. sites where the species is present at the 
moment but is likely to be absent in the future), gain (i.e. sites where 
the species is absent at the moment but is likely to be present in the 
future), stability (i.e. sites where the species is potentially present 
at the moment and is likely to be present in the future) and absence 
(i.e. sites where the species is absent at the moment and is likely to 
be absent in the future). For this, we considered range change under 
two contrasting dispersal scenarios: full dispersal, which assumes 

that the species can disperse to new suitable areas in the future; and 
no dispersal, which assumes that the species will be unable to dis-
perse and only the overlap between present and future distributions 
will be the expected range for the species (Thomas et  al.,  2004). 
Finally, we extracted this information for (1) areas outside PAs only, 
(2) the entire study region and (3) range overlap where areas of loss, 
gain, stability and absence were the same between taxa.

3  | RESULTS

In general, predictive performance of the individual models based on 
TSS was “poor” to “excellent,” depending on the algorithm and taxon 
(Appendix S2 in Supporting Information, Fig. S2.1a). On average, RF 
models performed best relative to GLMs which performed worst at 
predicting species distributions. Importantly, with TSS scores >0.5 
ensemble models had good predictive performance and clearly out-
performed individual models (Figure 1a, Fig S2.1a). For each taxon, 
the most important variables were the same in all individual models 
(Fig. S2.1b, Table S1.2). Our ensemble models indicated that the dis-
tribution of all taxa is strongly influenced by all predictors, particu-
larly by human-related variables (Figures 1b, 2; Table S1.2).

We do not show results regarding range change for mountain 
and Cross River gorillas given the extreme range loss obtained, 
that is complete loss of suitable habitat and no new suitable hab-
itat predicted under both future scenarios. Under the assumption 
of complete range stability in PAs, both future scenarios agree that, 
on average, more than half of suitable range is likely to be lost if 
no dispersal occurs (50% best, 61% worst) (Figures  3, 4, Fig S2.2, 

F I G U R E  1   Results of the ensemble models for each African ape taxon. (a) Predictive performance (mean TSS values and respective 
standard deviation (SD)) and (b) PCA-derived variable importance (mean and SD of the correlation values). Taxon name abbreviations: gbb 
– Gorilla beringei beringei, gbg – G. b. graueri, ggd – Gorilla gorilla diehli, ggg – G. g. gorilla, ppan – Pan paniscus, pte – Pan troglodytes ellioti, 
pts – P. t. schweinfurthii, ptt - P. t troglodytes, ptv – P. t. verus. Background colours in plot (a) corresponds to TSS performance: red – “poor,” 
yellow –“useful,” and green –“good to excellent.” For details about the PCA loadings in plot (b), see Figure 2
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Fig S2.3; Table 1). Most suitable range is predicted to be lost if the 
entire study region is considered (85% best, 94% worst). However, if 
dispersal occurs, most suitable range gain is predicted outside PAs 
under both future scenarios (52% best or 21% worst versus 66% best 
or 24% worst for the entire study region) (Figures 3, 4, Table 1). The 
range of G. b. graueri overlaps completely with that of P. t. schwein-
furthii, but only 16% of the latter overlaps with the former (Figure 5). 
In contrast, both ranges of G. g. gorilla and P. t. troglodytes fully over-
lap (99% and 95%, respectively). Under both future scenarios, no re-
duction in range overlap between G. b. graueri and P. t. schweinfurthii 
is predicted if no dispersal occurs, but half of gains are expected out-
side PAs if dispersal occurs (Figure 5, Table 1). In contrast, more than 
half of losses and gains are predicted where the ranges of G. g. gorilla 
and P. t. troglodytes overlap, particularly outside of PAs. Moreover, 
range stability is expected outside PAs (G. g. gorilla: 27% best, 4% 
worst; P. t. troglodytes: 18% best, 4% worst).

3.1 | Gorilla beringei beringei (mountain gorilla)

All model algorithms performed equally well at predicting mountain 
gorilla distribution (Figure 1a, Fig S2.1a). Cropland, human popula-
tion and secondary land were important predictors in the majority of 
individual and ensemble models, whereas annual precipitation and 
secondary land were the strongest determinants of mountain gorilla 
distribution in ANN models (Figures 1b, 2, Fig S2.1b; Table S1.2). This 
taxon is confined to fragmented habitat remnants in a sea of agricul-
ture, within which human population (2–10 people km−2) is low, and 
secondary land (>60%) and annual precipitation (1,200–1,600 mm) 
are high (Fig. S1.4). All predictors will increase by 2050 under both 
future scenarios, except for annual precipitation and secondary land 
which are predicted to decrease under the worst scenario. The rep-
resentativeness of PAs within the study region of mountain gorillas 
is the highest (36%) among all taxa.

F I G U R E  2   Taxon-specific variable loadings for the first four PCA axes. Only loadings >|0.4| are shown. Taxon name abbreviations: 
gbb – Gorilla beringei beringei, gbg – G. b. graueri, ggd – Gorilla gorilla diehli, ggg – G. g. gorilla, ppan – Pan paniscus, pte – Pan troglodytes 
ellioti, pts – P. t. schweinfurthii, ptt – P. t troglodytes, ptv – P. t. verus. For more details see Table S1.2. Legend colours represent the following: 
pink – climate-related variables, green – habitat-related variables and orange – human-related variables
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3.2 | Gorilla beringei graueri (Grauer's gorilla)

On average, RF, Maxent and GAM models performed best in predict-
ing the distribution of Grauer's gorillas (Fig S2.1a), in which annual 
and maximum temperatures were the most important explanatory 
variables (Figures  1b, 2, Fig S2.1b; Table S1.2). In contrast, crop-
land, human population and primary land were the most influential 
variables in those models that performed more poorly such as GLM 
and ANN models. The study region of this taxon is characterized by 
mean annual temperatures of 14–20°C, maximum temperatures of 
20–30°C, low human population (5–10 people km-2), high primary 
land cover (>80%) and very low cropland cover (<8%) (Fig. S1.4). 
Both climatic variables, proportion of cropland and human popula-
tion density are expected to increase and primary land to decrease 
under both future scenarios.

Only one quarter of the study region is in PAs. Under the as-
sumption of complete range stability in PAs, Grauer's gorillas are 
predicted to lose three quarters of their range under both future 
scenarios if no dispersal occurs, with most range predicted to be lost 

if the entire study region is considered (Figure 4, Fig S2.3; Table 1). 
No new suitable areas are expected outside PAs, but range gain is 
predicted inside PAs under the best scenario if dispersal occurs. 
Under both future scenarios, range loss is expected outside PAs 
where losses are also predicted for eastern chimpanzees (Figure 5, 
Table 1). Under the best scenario, almost half of the gains overlap 
with range gains predicted for eastern chimpanzees.

3.3 | Gorilla gorilla diehli (Cross River gorilla)

All model algorithms performed equally well at predicting the distri-
bution of Cross River gorillas (Figure 1a, Fig S2.1a), and all predictors 
ranked equally in importance in both individual and ensemble models 
(Figure 1b, Fig S2.1b). Annual temperature, maximum temperature 
and primary land were strongly associated with PC1, and annual pre-
cipitation, seasonal variation in precipitation (precipitation seasonal-
ity), human population and secondary land with PC2 (Figure 2, Table 
S1.2). Annual temperatures of 20–26°C, maximum temperatures of 

F I G U R E  3   Ensemble forecasting of the future (best- and worst-case scenarios) range change for (a) Gorilla spp and (b) Pan spp based on 
weighted mean and the true skill statistics (TSS). Results for G. beringei beringei and G. gorilla diehli are not shown. Details of range change 
for each taxon are provided in Figure. S2.3. Taxon name abbreviations: gbg – G. b. graueri, ggg – G. g. gorilla, ppan – Pan paniscus, pte – Pan 
troglodytes ellioti, pts – P. t. schweinfurthii, ptt – P. t troglodytes, ptv – P. t. verus



     |  9CARVALHO et al.

28–32°C, annual precipitation of 1,800–2,400  mm and seasonal 
variation in precipitation (66–72 mm), at least 60% of primary land 
and the rest secondary land (>40%) and low human population (<4 
people km−2) are suitable conditions found in the study region of this 
taxon (Fig. S1.4). According to both future scenarios, climatic varia-
bles and human population density are predicted to increase and the 
primary land to be lost completely. The proportion of PAs within the 
study region of Cross River gorillas is the lowest (9%) among all taxa.

3.4 | Gorilla gorilla gorilla (western lowland gorilla)

On average, RF and ANN models performed best at predicting west-
ern lowland gorilla distribution (Fig. S2.1a). All individual and ensem-
ble models showed that seasonal variation of precipitation and the 
proportion of secondary land are important predictors of western 
lowland gorilla distribution (Figures  1b, 2, S2.1b; Table S1.2). Areas 
characterized by high seasonal variation in precipitation (30–80 mm) 
and presence of secondary land (20%–80%) provide suitable condi-
tions for the persistence of this taxon (Fig. S1.4). According to both fu-
ture scenarios, seasonal variation in precipitation will not change, but 
secondary land cover is predicted to increase under the best scenario.

Only 17% of the study region of western lowland gorillas is in 
PAs. Assuming no dispersal, more than half of predicted range loss 
will occur outside PAs under both future scenarios (Figure  4, Fig. 
S2.3; Table 1). If the entire study region is considered, a loss of more 
than three quarters of their range is predicted under the best sce-
nario, and most of the taxon's range is likely to disappear under the 
worst scenario. With dispersal, however, substantial range increases 
outside PAs are predicted under both future scenarios, with a slight 
increase if the whole study region is considered (Figure 4, Fig. S2.3; 
Table 1). Under both future scenarios, most losses are expected out-
side PAs where losses for central chimpanzees were also predicted 

(Figure 5, Table 1). Slightly higher values were found for the entire 
study region. Gains in range overlap are predicted outside PAs 
(Figure 5, Table 1). Importantly, 27% or 4% of range stability is ex-
pected where central chimpanzees are also predicted to be present 
under the best and worst scenarios, respectively.

3.5 | Pan paniscus (bonobo)

On average, RF and ANN models performed best in predicting 
bonobo distribution (Fig. S2.1a). Annual temperature, maximum 
temperature and primary land were important predictors of bonobo 
distribution in both individual and ensemble models (Figures 1b, 2, 
Fig. S2.1b; Table S1.2). Favourable environmental conditions in the 
study region of this taxon are annual temperatures of 24–26°C, high 
maximum temperatures of 30–33°C and primary land cover (>80%) 
(Fig. S1.4). Both temperature variables are predicted to increase and 
primary land to decrease in the future.

PAs represent only one fifth of the study region of bonobos. 
Under both future scenarios, only one third of its range outside PAs 
is predicted to be lost if no dispersal occurs, with almost three quar-
ters predicted to be lost if including the entire study region (Figure 4, 
Fig. S2.3, Table 1). The taxon's range is predicted to expand into new 
areas and, if bonobos disperse, substantial range gains are predicted 
outside PAs under future scenarios, with a slight increase expected 
for the entire study region (Table 1).

3.6 | Pan troglodytes ellioti (Nigeria-Cameroon 
chimpanzee)

All model algorithms performed equally well at predicting Nigeria-
Cameroon chimpanzee distribution (Figure  1a, Fig S2.1a). Annual 

F I G U R E  4   Predicted percentage 
change outside protected areas (filled 
bars) in African ape ranges by 2050 
under the best- and the worst-case 
scenario, assuming either no dispersal 
(loss) and dispersal (gain). Shaded and 
filled bars together represent the results 
for the entire study region. Taxon name 
abbreviations: gbg – G. b. graueri, ggg 
– G. g. gorilla, ppan – Pan paniscus, 
pte – Pan troglodytes ellioti, pts – P. t. 
schweinfurthii, ptt – P. t troglodytes, ptv – 
P. t. verus
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precipitation and seasonal variation of precipitation were the best 
predictors in both individual and ensemble models (Figures  1b, 2, 
Fig. S2.1b; Table S1.2). Areas with high annual precipitation (2,000–
3,500 mm) and pronounced seasonal variation of precipitation (50–
90 mm) offer suitable conditions for Nigeria-Cameroon chimpanzees 
(Fig. S1.4). Under the worst scenario, both annual precipitation and 
seasonal variation of precipitation are predicted to decrease.

Only one tenth of the study region is covered by PAs. If no dis-
persal occurs, most of the taxon's range is predicted to be lost out-
side PAs under both future scenarios (Figure 4, Fig. S2.3; Table 1). 
Greater losses can be expected when the entire study region is con-
sidered. In contrast, if dispersal occurs, substantial range gains are 
predicted outside PAs, particularly under the best scenario, and a 
slight increase is expected for the entire study region (Table 1).

3.7 | Pan troglodytes schweinfurthii (eastern 
chimpanzee)

On average, RF and Maxent models performed best in explaining 
eastern chimpanzee distribution (Fig. S2.1a). Annual and maximum 
temperatures were important predictors in most individual and en-
semble models, except for RF models, where annual precipitation, 
seasonal variation in precipitation, primary land and secondary land 
performed best (Figures 1b, 2, Fig. S2.1b; Table S1.2). Eastern chim-
panzees encounter suitable conditions where the annual tempera-
ture is low (10–20°C), and maximum temperature is between 15 and 
30 ⁰C (Fig. S1.4). Under the worst scenario, both temperature vari-
ables are predicted to increase.

Only one fifth of the study region of eastern chimpanzees is in 
PAs. According to both future scenarios, one third of the taxon's 
range is expected to be lost outside PAs if no dispersal occurs, with 
most range predicted to be lost if the entire study region is consid-
ered (Figure 4, Fig. S2.3; Table 1). In contrast, if dispersal occurs, a 
slight gain is expected outside PAs under both future scenarios, with 
a slight range expansion into new suitable areas expected for the 

entire study region (Figure 4, Fig. S2.3; Table 1). None of the pre-
dicted losses are expected where their range overlaps with that of 
Grauer's gorilla, but all gains are expected where both ranges over-
lap (Figure 5, Table 1).

3.8 | Pan troglodytes troglodytes (central 
chimpanzee)

On average, RF, ANN and Maxent models performed best in pre-
dicting central chimpanzee distribution (Fig. S2.1a). Secondary 
land and seasonal variation of precipitation were the predictors 
of greatest importance in individual and ensemble models, except 
for GAM and Maxent models, where cropland and human popula-
tion were slightly better predictors (Figures 1b, 2, Fig. S2.1b; Table 
S1.2). The study region of central chimpanzees is characterized by 
a relatively high percentage of secondary land (>40%), a human 
population density between 5 and 15 people km−2, seasonal vari-
ation of precipitation between 30 and 80 mm and low percentage 
of cropland (<15%) (Fig. S1.4). The best scenario predicts second-
ary land expansion, an increase in human population and a reduc-
tion in cropland area. Large increases in all variables are predicted 
under the worst scenario.

As was found for eastern chimpanzees, only one fifth of the 
study region of central chimpanzees is covered by PAs. A reduction 
of three quarters of range is expected outside PAs under both future 
scenarios if no dispersal occurs, with most range expected to be lost 
if the entire study region is included (Figure 4, Fig. S2.3; Table 1). 
Predictions of range gains for central chimpanzees suggest that 
substantial suitable habitat will become available outside PAs under 
the best scenario, with a slight increase if assuming the entire study 
region (Table 1). Under both future scenarios, most losses were pre-
dicted outside PAs in the same geographic areas where losses for 
western lowland gorillas are also expected, with a slight increase ex-
pected for the entire study region (Figure 5, Table 1). The same trend 
was predicted for gains (Table 1).

No dispersal scenario Dispersal scenario

Outside PAs Entire region Outside PAs Entire region

Taxon Best Worst Best Worst Best Worst Best Worst

gbg* 71 (3) 74 (3) 94 100 – – 46 (15) –

ggg** 46 (45) 61 (61) 78 (66) 93 (70) 114 (49) 17 (10) 124 (49) 27 (10)

ppan 22 25 72 76 94 11 104 114

pte 62 79 91 96 39 6 44 8

pts* 33 38 97 99 2 2 7 (7) 2

ptt** 52 (43) 68 (44) 81 (45) 96 (48) 71 (55) 4 (1) 77 (55) 4 (4)

Ptv 63 84 79 99 44 8 63 12

Note: The percentage of interspecies range overlap is shown in parenthesis. Taxon name 
abbreviations: gbg – G. b. graueri, ggg – G. g. gorilla, ppan – Pan paniscus, pte – Pan troglodytes ellioti, 
pts – P. t. schweinfurthii, ptt – P. t troglodytes, ptv – P. t. verus.
*range overlap between gbg and pts; **range overlap between ggg and ptt

TA B L E  1   Results of the predicted 
change (%) in African ape ranges, 
assuming either no dispersal (loss) 
and dispersal (gain), for areas outside 
protected areas (PAs) only (assuming 
complete management effectiveness of 
PAs) and for the entire study region, by 
2050 under the best- and the worst-case 
scenario
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3.9 | Pan troglodytes verus (western chimpanzee)

On average, RF and ANN models performed best in predicting the 
distribution of western chimpanzees (Fig. S2.1a). Annual precipi-
tation, primary land and human population were the most impor-
tant variables in individual and ensemble models (Figures  1b, 2, 
Fig. S2.1b; Table S1.2). Current environmental conditions found in 
the study region of western chimpanzees are annual precipitation 
below 2,000 mm, a very high presence of human population (>10 
people km−2) and high primary land cover (>60%) (Fig. S1.4). A large 
decrease in primary land and an increase in human population are 
predicted under both future scenarios.

Western chimpanzees have the widest geographic distribution 
among African apes; however, the representativeness of PAs is 
low (17%). Most range loss is predicted outside PAs under both 
future scenarios if no dispersal occurs, with a further increase in 
range loss if the entire study region is considered (Figure 4, Fig. 

S2.3; Table 1). On the other hand, range gains are mostly antici-
pated outside PAs, particularly under the best scenario, if there is 
dispersal (Table 1).

4  | DISCUSSION

This is the first study to combine climate, land use and human pop-
ulation changes in an ensemble forecasting approach to predict 
taxon-specific distributions of African apes by 2050. All taxa are 
likely to experience marked range losses irrespective of whether 
complete effectiveness in PA management is assumed (50% best 
scenario, 66% worst scenario) or not (85% best scenario, 94% 
worst scenario). At the same time, new areas within taxon-specific 
study regions may become suitable (outside PAs: 52% best sce-
nario, 21% worst scenario; entire study region: 66% best scenario, 
24% worst scenario). Moreover, more than half of range losses 
and gains are expected to occur outside PAs where interspecific 
ranges overlap. Range gain and loss are processes which operate 
at very different time scales, and hundreds to thousands of years 
can be expected for a great ape to disperse into new suitable areas 
given its limited dispersal capacity (Schloss et  al.,  2012), migra-
tion lag and ecological constraints. The 30-year time frame con-
sidered here represents a bit more than an ape generation (Kuehl 
et al., 2017; Plumptre et al., 2016) and it is unlikely that migration 
into new areas during this time occurs to any greater extent. It is 
therefore very important that these results are not interpreted as 
indicating that range gain will definitely occur as effective protec-
tion of new suitable areas will need to be ensured for a great ape 
population to shift to such habitat. Importantly, massive range loss 
can be anticipated in the next 30 years given the 2%–7% of an-
nual population decline previously estimated for great apes (Kuehl 
et  al.,  2017; Plumptre et  al.,  2016; Strindberg et  al.,  2018; Wich 
et al., 2016).

A previous study quantified changes in suitable environmen-
tal conditions for African apes between 1990 and 2000 and found 
that the greatest proportional reductions occurred for gorillas 
(G. g. diehli, with range losses of 59%; G. b. graueri, 52%; G. g. gorilla, 
32%) and bonobos (P.  paniscus, 29%) compared with chimpanzees 
(P.  t.  troglodytes, 17%; P.  t.  verus, 11%) (Junker et  al.,  2012). By in-
corporating variables derived from remote sensing into this habitat 
suitability model, a greater decline in suitable conditions was pre-
dicted for chimpanzees for the period 2000–2012 (P. t. ellioti, 35%; 
P. t. schweinfurthii, 89%; P. t. troglodytes, 66%; P. t. verus, 73%) (Jantz 
et al., 2016). Based on correlative models, half of the P. t. ellioti range 
was predicted to be lost by 2020 (Clee et al., 2015) while complete 
range collapse due to climate change was suggested for G. b. beringei 
by 2090 (Thorne et  al.,  2013). Given the small range of mountain 
gorillas and their highly restricted occurrence in mountain refuges 
as a result of human encroachment and the geographic barrier of 
the Rift Valley, one would expect them to be particularly suscepti-
ble to global warming and extinction. Thorne et al. (2013) compared 
correlative and mechanistic models to address the future effects of 

F I G U R E  5   Predicted change in range overlap where areas of 
loss, gain, stability and absence were the same between (a) and 
(b) Gorilla beringei graueri (gbg) and Pan troglodytes schweinfurthii 
(pts), and between (c) and (d) Gorilla gorilla gorilla (ggg) and Pan 
troglodytes troglodytes (ptt), by 2050 under the best- and the worst-
case scenario. The category “overlap” represents areas where taxa 
overlap but future range conditions are unlikely to be the same 
between them. The black lines represent protected areas
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climate change on mountain gorillas and found that correlative mod-
els predict more dramatic changes in range change than mechanistic 
models. In contrast, mechanistic models revealed that, if plant pro-
ductivity remains unaffected, gorillas will be able to adapt to warm-
ing temperatures (Thorne et al., 2013).

Lehmann et al. (2010) employed a physiological/behavioural 
mechanistic approach to investigate how climate change under a 
worst scenario would influence African ape survival and reported 
that chimpanzees might lose 10% of current range and gorillas 75% 
by the year 2100. Our study concurs with these results for most 
gorilla taxa, but more than three quarters of chimpanzee range is 
predicted to be lost under both future scenarios if no dispersal oc-
curs. However, our full dispersal scenario predicts range gains in 
new areas under both future scenarios for most taxa, in agreement 
with Lehmann's study. The different results regarding range loss pre-
dicted for chimpanzees can be explained as follows: (1) community 
size rather than animal density was considered in Lehmann's model 
and the minimum party size requirements were not allowed to vary 
in response to vegetation cover, otherwise losses up to 39% may 
be expected for chimpanzees; (2) the effect of climate change on 
great ape distribution is critically dependent on the minimum viable 
group size that apes require for survival, and a conservative value for 
minimum viable group sizes (i.e. 10 individuals) based on minimum 
observed group sizes (which is not exactly the same) was used in 
Lehmann et al.  (2010). In contrast, if a greater number of individu-
als had been considered (i.e. 45 individuals, Lehmann et al., 2007) 
up to 50% of range loss would be expected for chimpanzees; (3) by 
including not only climatic variables as in Lehmann's study, but also 
relevant human-related variables known to have a strong effect on 
current great ape distribution, our models provide a better under-
standing of the combined effects of these global change drivers and 
imply that negative effects of climate change on African apes can 
be reduced through appropriate land use planning and management. 
Nevertheless, both approaches agree that future climate is predicted 
to dramatically change across African ape ranges.

Among the important climatic variables in determining resource 
availability and species distributions, and consequently, their effects 
on African ape time budgets, gorillas and chimpanzees are more 
sensitive to variations in temperature than in precipitation and they 
persist better in habitats with lower monthly temperature variation 
(Lehmann et  al.,  2010). Moreover, gorillas are predicted to be af-
fected more than chimpanzees given the more restricted behavioural 
flexibility of gorillas to cope with temperature variation (Lehmann 
et al., 2010). Our study suggests that annual and maximum tempera-
tures influence the distribution of most gorillas, bonobos and eastern 
chimpanzees, but not that of the other three subspecies of chimpan-
zee. Additionally, annual precipitation, and particularly its distribution 
over the wet and dry seasons, affects the distribution of most gorillas 
and most chimpanzees. These findings were also identified in shaping 
the distribution of Nigeria-Cameroon and central chimpanzees (Clee 
et al., 2015) and are indirect evidence of the marked influence of both 
temperature and precipitation on species niche with regard to dehy-
dration and thermoregulation (Wessling et al., 2018).

Wich et al. (2014) investigated the representativeness of oil 
palm concessions within African ape ranges and found that more 
than half of the oil palm concessions are located within their cur-
rent ranges. Moreover, potential future oil palm development is 
widely expected across their ranges, particularly in land outside 
PAs (Wich, Garcia-Ulloa, Kühl, et al., 2014). Thus, we can expect 
climate change to exacerbate range loss for African apes and con-
sequently pose serious threats to species persistence, as they are 
anticipated to impact orangutans (Struebig et  al.,  2015). By in-
tegrating future climate and land use changes as well as human 
population scenarios, our predictions provide strong evidence for 
synergistic interactions among these global drivers constraining 
species distributions. We suggest that future studies assess how 
much of the new predicted suitable areas will African apes be able 
to colonize by considering a mechanistic approach that integrates 
population dynamics (as in Lehmann et  al.  2010) and dispersal 
abilities.

4.1 | Limitations of distribution models

Modelling species responses to global environmental changes car-
ries many uncertainties (Araújo & New, 2007; Thuiller et al., 2019). 
Using two future scenarios, two dispersal scenarios, an ensemble 
forecasting approach and including only a few but highly important 
predictors of the distribution of African apes, should have addressed 
potential sources of uncertainty in our distribution models (Brun 
et al., 2019; Thorne et al., 2013). A recent study proposed that SDMs 
include historical records to produce better predictions of range 
shifts rather than relying on contemporary records alone (Faurby & 
Araújo, 2018). This is important for large vertebrates given the di-
rect effects of anthropogenic disturbances on their distribution, and 
many ranges being far from equilibrium under current environmen-
tal conditions (Faurby & Araújo, 2018). The species occurrences we 
used are from field sites and may only represent where African apes 
occur now, but do not take into account areas of potential distribu-
tion where they may once have occurred but have now been ex-
tirpated. Unfortunately, reliable information about historical ranges, 
especially hundreds or thousands of years ago, is not available. Thus, 
it is possible that our predictions of current African ape distribution 
have underestimated the diversity of niches suitable for these spe-
cies, which consequently may have limited our model predictions 
under future conditions.

To simplify the interpretation of results and for a better com-
parison between taxa, we decided to keep the default settings of 
the algorithms, which may have resulted in uncertainty regarding 
model performance and resulting species distribution due to the dif-
ferential sensitivity of each algorithm to species modelled, sampling 
effort and evaluation metric (Hallgren et al., 2019). We recommend 
investigating the sensitivity of the algorithms to their configuration 
settings on the resulting projected species distribution (Hallgren 
et  al.,  2019). In addition, we relied on pseudo-absences instead 
of true absences and considered a greater number of randomly 
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selected pseudo-absence points for those taxa with a larger study 
region, which may have introduced uncertainty given the differen-
tial sensitivity of each algorithm to the number of pseudo-absences 
(Barbet-Massin et  al.,  2012; Guillera-Arroita et  al.,  2015; Phillips 
et al., 2009). We thus recommend selecting the number of pseudo-
absences and choosing the method to generate them depending on 
each algorithm (Barbet-Massin et al., 2012) and using true absences 
whenever available.

Model performance was evaluated through cross-validation 
using a bootstrap approach, which is a common procedure in SDMs 
(Thuiller et  al.,  2009). However, it can be problematic and lead to 
over-fitting models and inflated performance metrics, particularly 
in the presence of spatial autocorrelation (Telford & Birks,  2009; 
Wenger & Olden, 2012). Despite rarefying species points and cre-
ating sampling bias layers from these points, we could not reduce 
spatial autocorrelation completely and potentially it inflated the 
performance metric (i.e. TSS). To better deal with the effect of 
spatial autocorrelation, it would be useful if non-traditional cross-
validation schemes such as block spatial CV and h-block CV would 
be implemented in future versions of the biomod2 package (Telford 
& Birks, 2009; Wenger & Olden, 2012).

Model performance also depends on spatial resolution of the 
environmental variables, particularly when variables are originally 
available at coarse resolutions (Wenger & Olden, 2012). The original 
resolution of the spatial layers of land use (at 50 km) and human pop-
ulation changes (at 15 km) potentially influenced the performance of 
our models, particularly in those species with narrow distributions 
such as mountain gorillas (Thorne et al., 2013) and Cross River go-
rillas, given the extreme trends in range loss predicted (Wenger & 
Olden, 2012). Therefore, it would be important to consider future 
scenarios for climate, land use and human population changes at 
finer scales once such spatial layers become available. Additionally, 
mechanistic approaches may be more appropriate for species with 
narrow distributions as large differences in range change can be 
obtained with different modelling approaches (Thorne et al., 2013). 
Mining concessions and granted mining claims are increasing dramat-
ically across Africa, particularly threatening large ape populations in 
Guinea, Gabon and Liberia (Howard, 2019). It will be important to 
model the influence of this threat on future African ape distributions 
once appropriate spatial datasets become available.

Nevertheless, despite these potential sources of uncertainty in 
our distribution models, the predicted ranges under current condi-
tions in this study (Fig. S2.2) are well in line with results from previous 
studies, importantly also for those taxa for which model algorithms 
had “poor” or “useful” performance (e.g. G. g. gorilla and P. t. troglo-
dytes (Strindberg et al., 2018); G. b. graueri (Plumptre et al., 2016); and 
all African apes (Junker et al., 2012)).

4.2 | Conservation implications

Strindberg et al. (2018) found that western lowland gorillas and 
central chimpanzees, two sympatric taxa with 97% range overlap, 

occur mostly outside PAs, and argued for “reinforcement of anti-
poaching efforts both inside and outside protected areas (particularly 
where habitat quality is high and human impact is low), diligent disease 
control measures (including training, advocacy, and research into Ebola 
virus disease), and the preservation of high-quality habitat through 
integrated land use planning and implementation of best practices by 
the extractive and agricultural industries”. Our study suggests that 
both taxa will find environmentally suitable areas outside PAs, in 
line with our predictions for most African apes. Thus, outcomes 
from our SDMs should be integrated with a habitat connectivity 
analysis to optimize conservation land use planning and iden-
tify priority areas for these species (Freeman et al., 2018; Jones 
et al., 2018). This is extremely important given that many African 
PAs in ape ranges are separated from each other – although there 
is often transboundary connectivity (Santini et al., 2016). This is 
also of particular concern because great apes occur mostly outside 
PAs and have a low dispersal capacity due to their small popula-
tion sizes, low population densities, dietary requirements and poor 
thermoregulation. It will be important to ensure objective assess-
ments of human pressures and habitat conditions in potential PAs 
to avert species extinctions in the long term (Jones et al., 2018).

Taxon-specific frameworks of environmental and socio-
economic trends (Estrada et  al.,  2018; Strindberg et  al.,  2018; 
Tranquilli et al., 2014) should be considered at all major decision-
making levels in range countries and abroad to (1) improve the man-
agement of suitable areas predicted by our models within PAs; (2) 
increase the size of PAs, establish additional PAs and ensure hab-
itat connectivity based on our results; (3) promote effective land 
use planning based on our maps to ensure that areas of current 
and future high conservation value are not converted into agricul-
tural land or fragmented by roads; (4) establish responsible forest 
management planning (e.g. as currently practiced in logging con-
cessions under FSC standards); (5) implement more effective law 
enforcement in ape ranges by anti-poaching teams whether inside 
and outside of PAs, supplemented by environmental education, 
community development, appropriate tourism programmes and 
research (IUCN & ICCN (2012); IUCN, 2014; Tranquilli et al., 2012, 
2014); and (6) incorporate climate change into land use planning 
and propose mitigation measures on the conservation agenda for 
African apes and sympatric wildlife. Public–private partnerships 
have proven highly effective across the forest and savanna zones, 
where an NGO or other organization takes on management re-
sponsibility for a given site over one or more decades (Scholte 
et al., 2018).

5  | CONCLUSIONS

Our results corroborate other recent studies showing that African 
ape populations and their habitats are declining dramatically 
(Clee et al., 2015; Freeman et al., 2018; Hickey et al., 2013; Junker 
et  al.,  2012; Kuehl et  al.,  2017; Lehmann et  al.,  2010; Plumptre 
et al., 2016; Strindberg et al., 2018; Thorne et al., 2013). Our findings 
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should also be used to guide the prioritization of conservation efforts 
for these flagship species to avoid irreversible losses. Our study goes 
beyond previous work, which focused only on modelling the effects 
of climate change alone. Here, we also consider land use and human 
population changes, which advances our understanding of the joint 
effects of these key drivers on African ape distribution. Importantly, 
our findings suggest that some of the negative effects of climate 
change on African apes can be mitigated if appropriate land use plan-
ning and management action is taken. Given that all great ape taxa will 
find most suitable areas outside PAs, and that the existing network of 
PAs is inadequate for ensuring the long-term conservation of African 
apes (Strindberg et al., 2018), we support the argument that effective 
conservation strategies require taxon-specific conservation planning 
that focuses on existing and proposed PAs, the creation and/or man-
agement of which can be informed by our habitat suitability models. 
Additionally, efforts to maintain connectivity between the habitats 
predicted to be suitable in the future will be crucial for the survival 
of African apes. As an example, a country-wide approach has been 
undertaken in Gabon, where planning for the development of agri-
culture, road and rail links, and mineral extraction has been informed 
by wildlife and vegetation data in order to locate these activities in 
areas that are already degraded, and to avoid closed-canopy old-
growth and remote forests (Government of Gabon, 2012; Strindberg 
et al., 2018). This will be an effective way of promoting habitat con-
nectivity to maintain African ape populations and sympatric wildlife.
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