12 research outputs found

    A Wooly Way? Fiber technologies and cultures 3,000-years-ago along the Inner Asian Mountain Corridor

    Get PDF
    Wool-focused economies yielded a pastoralist materiality that visibly shaped the lived experiences of Central Asian populations today. In this paper, we investigate the earlier application of fibers through a key mountain corridor for social interactions during Prehistory. We focus on the site of Chap 1 located in the highlands of the Tien Shan Mountains of Kyrgyzstan where researchers have found a complex agropastoral subsistence culture was established from at least ca. 3,000 BCE. The perishable materials that would have accompanied the early spread of cultural and technological traditions related to fiber-based crafts throughout this area are under-documented due to poor organic preservation. Hence, there has been little consideration of the role that textiles played in highland occupation and how woven fabrics might have facilitated settlement in the extreme climates of Central Asia. We address this ongoing problem through a multi-application survey of Chap’s unpublished textile evidence preserved as impressions in coarseware ceramics of its Final Bronze Age. We consider evidence that sheep wool formed a key cultural adaptation for surviving the extreme winters of Central Asia’s highland regions

    The resilience of pioneer crops in the highlands of Central Asia: Archaeobotanical investigation at the Chap II site in Kyrgyzstan

    No full text
    This paper presents archaeobotanical research results from an occupation horizon of the Chap II site left by the earliest known farming community in the Central Tien Shan mountains in the current territory of Kyrgyzstan. The archaeobotanical samples were recovered from well-defined contexts in domestic waste pits, house floors, fireplaces, and an oven, all of which date to a narrow period of occupation between 2474 and 2162 cal BCE (based on n-14 AMS dates). The archaeobotanical assemblage is dominated by the SW package crops of bread wheat and naked barley. Those are the only species to have progressed further east across the mountain ranges of Central Asia during the earliest wave of crop dispersal. However, other species in small quantities were also identified at the Chap II site, such as T. durum/turgidum and T. carthlicum, possibly glume wheats and hulled barley. Here, we argue that the dominant compact morphotypes seen only in bread wheat and naked barley caryopses hint toward a selection for the specific adaptive traits of cultigens that enabled successful agriculture in high-altitude ecogeographies. Large variations in cereal caryopses size possibly indicate that crops endured stress (e.g., insufficient nutrients, water, or other) during plant development. More research is needed for a better understanding of the developmental plasticity between different crop species and the formation of unique landraces in diverse environmental niches in the past

    The integration of millet into the diet of Central Asian populations in the third millennium BC

    No full text
    Stable isotope analyses demonstrate that C 4 plants played an important dietary role in Eurasian prehistory. Uncertainty remains, however, about when and how crops were integrated into the diet of Central Asian populations. Here, the authors present δ 13 C and δ 15 N stable isotope analysis of human and animal bone collagen from Kyrgyzstan, revealing C 4 plant—likely broomcorn millet—consumption in the third millennium BC. Combining this evidence with AMS radiocarbon dating and animal collagen peptide fingerprinting demonstrates that broomcorn millet was consumed by humans and animals during the earliest episodes of the westward spread of this crop plant. The results contribute to debates about the timing and means by which domesticated millets were dispersed across Eurasia

    Southwest Asian cereal crops facilitated high-elevation agriculture in the central Tien Shan during the mid-third millennium BCE

    No full text
    We report the earliest and the most abundant archaeobotanical assemblage of southwest Asian grain crops from Early Bronze Age Central Asia, recovered from the Chap II site in Kyrgyzstan. The archaeobotanical remains consist of thousands of cultivated grains dating to the mid-late third millennium BCE. The recovery of cereal chaff and weeds suggest local cultivation at 2000 m.a.s.l., as crops first spread to the mountains of Central Asia. The site's inhabitants possibly cultivated two types of free-threshing wheats, glume wheats, and hulled and naked barleys. Highly compact caryopses of wheat and barley grains represent distinct morphotypes of cereals adapted to highland environments. While additional macrobotanical evidence is needed to confirm the presence of glume wheats at Chap II, the possible identification of glume wheats at Chap II may represent their most eastern distribution in Central Asia. Based on the presence of weed species, we argue that the past environment of Chap II was characterized by an open mountain landscape, where animal grazing likely took place, which may have been further modified by people irrigating agricultural fields. This research suggests that early farmers in the mountains of Central Asia cultivated compact morphotypes of southwest Asian crops during the initial eastward dispersal of agricultural technologies, which likely played a critical role in shaping montane adaptations and dynamic interaction networks between farming societies across highland and lowland cultivation zones

    137 ancient human genomes from across the Eurasian steppes.

    Get PDF
    For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century BC, forming the Hun traditions in the fourth-fifth century AD, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry

    The formation of human populations in South and Central Asia

    Get PDF
    By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.N.P. carried out this work while a fellow at the Radcliffe Institute for Advanced Study at Harvard University. P.M. was supported by a Burroughs Wellcome Fund CASI award. N.N. is supported by a NIGMS (GM007753) fellowship. T.C. and A.D. were supported by the Russian Science Foundation (project 14-50-00036). T.M.S. was supported by the Russian Foundation for Basic Research (grant 18-09-00779) “Anthropological and archaeological aspects of ethnogenesis of the population of the southern part of Western and Central Siberia in the Neolithic and Early Bronze Age.” D.P., S.S., and D.L. were supported by European Research Council ERC-2011-AdG 295733 grant (Langelin). O.M. was supported by a grant from the Ministry of Education and Sciences of the Russian Federation No. 33.1907, 2017/Π4 “Traditional and innovational models of a development of ancient Volga population”. A.E. was supported by a grant from the Ministry of Education and Sciences of the Russian Federation No. 33.5494, 2017/BP “Borderlands of cultural worlds (Southern Urals from Antiquity to Early Modern period).” Radiocarbon dating work supported by the NSF Archaeometry program BCS-1460369 to D.Ken. and B.J.C. and by the NSF Archaeology program BCS-1725067 to D.Ken. K.Th. was supported by NCP fund (MLP0117) of the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi. N.Bo., A.N., and M.Z. were supported by the Max Planck Society. D.Re. is an Investigator of the Howard Hughes Medical Institute, and his ancient DNA laboratory work was supported by National Science Foundation HOMINID grant BCS-1032255, by National Institutes of Health grant GM100233, by an Allen Discovery Center grant, and by grant 61220 from the John Templeton Foundation

    Tracking five millennia of horse management with extensive ancient genome time series

    Get PDF
    Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.T.M.-B. was supported by the BFU2017-86471-P (MINECO/FEDER, UE), the U01 MH106874 grant, Howard Hughes International Early Career, Obra Social “La Caixa,” and Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya. V.P. was supported by Russian Science Foundation (16-18-10265). This research received support from the SYNTHESYS Project (http://www.synthesys.info/), which is financed by European Community Research Infrastructure Action under the Seventh Framework “Capacities” Programme. This work was supported by the Danish National Research Foundation (DNRF94), the Initiative d’Excellence Chaires d’attractivité, Université de Toulouse (OURASI), the International Highly Cited Research Group Program (HCRC#15-101), Deanship of Scientific Research, King Saud University, the Villum Fonden miGENEPI research project, the Swiss National Science Foundation (CR13I1_140638), the Research Council of Norway (project 230821/F20); the investigation grant HAR2016-77600-P, Ministerio de Economía y Competitividad, Spain, and the National Science Foundation (ANS-1417036). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 681605)
    corecore