215 research outputs found

    Analyzing Scrip Systems

    Get PDF
    Scrip systems provide a nonmonetary trade economy for exchange of resources. We model a scrip system as a stochastic game and study system design issues on selection rules to match potential trade partners over time. We show the optimality of one particular rule in terms of maximizing social welfare for a given scrip system that guarantees players' incentives to participate. We also investigate the optimal number of scrips to issue under this rule. In particular, if the time discount factor is close enough to one, or trade benefits one partner much more than it costs the other, the maximum social welfare is always achieved no matter how many scrips are in the system. When the benefit of trade and time discount are not sufficiently large, on the other hand, injecting more scrips in the system hurts most participants; as a result, there is an upper bound on the number of scrips allowed in the system, above which some players may default. We show that this upper bound increases with the discount factor as well as the ratio between the benefit and cost of service. Finally, we demonstrate similar properties for a different service provider selection rule that has been analyzed in previous literature.Masdar Institute of Science and TechnologyNational Science Foundation (U.S.) (Contract CMMI-0758069

    TCR Mechanobiology: Torques and Tunable Structures Linked to Early T Cell Signaling

    Get PDF
    Mechanotransduction is a basis for receptor signaling in many biological systems. Recent data based upon optical tweezer experiments suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into biochemical signals upon specific peptide-MHC complex (pMHC) ligation. Tangential force applied along the pseudo-twofold symmetry axis of the TCR complex post-ligation results in the αβ heterodimer exerting torque on the CD3 heterodimers as a consequence of molecular movement at the T cell–APC interface. Accompanying TCR quaternary change likely fosters signaling via the lipid bilayer predicated on the magnitude and direction of the TCR–pMHC force. TCR glycans may modulate quaternary change, thereby altering signaling outcome as might the redox state of the CxxC motifs located proximal to the TM segments in the heterodimeric CD3 subunits. Predicted alterations in TCR TM segments and surrounding lipid will convert ectodomain ligation into the earliest intracellular signaling events

    An Enigmatic 380 kpc Long Linear Collimated Galactic Tail

    Full text link
    We present an intriguing, serendipitously-detected system consisting of an S0/a galaxy, which we refer to as the "Kite", and a highly-collimated tail of gas and stars that extends over 380 kpc and contains pockets of star formation. In its length, narrowness, and linearity the Kite's tail is an extreme example relative to known tails. The Kite (PGC 1000273) has a companion galaxy, Mrk 0926 (PGC 070409), which together comprise a binary galaxy system in which both galaxies host active galactic nuclei. Despite this systems being previously searched for signs of tidal interactions, the tail had not been discovered prior to our identification as part of the validation process of the SMUDGes survey for low surface brightness galaxies. We confirm the kinematic association between various Hα\alpha knots along the tail, a small galaxy, and the Kite galaxy using optical spectroscopy obtained with the Magellan telescope and measure a velocity gradient along the tail. The Kite shares characteristics common to those formed via ram pressure stripping ("jellyfish" galaxies) and formed via tidal interactions. However, both scenarios face significant challenges that we discuss, leaving open the question of how such an extreme tail formed. We propose that the tail resulted from a three-body interaction from which the lowest-mass galaxy was ejected at high velocity.Comment: Submitted to publication in MNRAS (comments welcome

    Markers of inflammation predict the long-term risk of developing chronic kidney disease: a population-based cohort study

    Get PDF
    In animal models, inflammatory processes have been shown to have an important role in the development of kidney disease. In humans, however, the independent relation between markers of inflammation and the risk of chronic kidney disease (CKD) is not known. To clarify this, we examined the relationship of several inflammatory biomarker levels (high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, white blood cell count, and interleukin-6) with the risk of developing CKD in a population-based cohort of up to 4926 patients with 15 years of follow-up. In cross-sectional analyses, we found that all these inflammation markers were positively associated with the outcome of interest, prevalent CKD. However, in longitudinal analyses examining the risk of developing incident CKD among those who were CKD-free at baseline, only tumor necrosis factor-α receptor 2, white blood cell count, and interleukin-6 levels (hazard ratios comparing highest with the lowest tertile of 2.10, 1.90, and 1.45, respectively), and not C-reactive protein (hazard ratio 1.09), were positively associated with incident CKD. Thus, elevations of most markers of inflammation predict the risk of developing CKD. Each marker should be independently verified

    The State of the Region: Hampton Roads 2005

    Get PDF
    This is Old Dominion University\u27s Sixth Annual State of the Region Report. While it represents the work of many people connected in various ways to the university, the report does not constitute an official viewpoint of Old Dominion, or it\u27s president, Roseann Runte. The report maintains the goal of stimulating thought and discussion that ultimately will make Hampton Roads an even better place to live. We are proud of our region\u27s many successes, but realize that it is possible to improve our performance. In order to do so, we must have accurate information about where we are and a sound understanding of the policy options open to us.https://digitalcommons.odu.edu/economics_books/1013/thumbnail.jp

    miR-1269 promotes metastasis and forms a positive feedback loop with TGF-β

    Get PDF
    As patient survival drops precipitously from early-stage cancers to late-stage and metastatic cancers, microRNAs that promote relapse and metastasis can serve as prognostic and predictive markers as well as therapeutic targets for chemoprevention. Here we show that miR-1269a promotes colorectal cancer (CRC) metastasis and forms a positive feedback loop with TGF-β signalling. miR-1269a is upregulated in late-stage CRCs, and long-term monitoring of 100 stage II CRC patients revealed that miR-1269a expression in their surgically removed primary tumours is strongly associated with risk of CRC relapse and metastasis. Consistent with clinical observations, miR-1269a significantly increases the ability of CRC cells to invade and metastasize in vivo. TGF-β activates miR-1269 via Sox4, while miR-1269a enhances TGF-β signalling by targeting Smad7 and HOXD10, hence forming a positive feedback loop. Our findings suggest that miR-1269a is a potential marker to inform adjuvant chemotherapy decisions for CRC patients and a potential therapeutic target to deter metastasis

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Novel Bacterial Taxa in the Human Microbiome

    Get PDF
    The human gut harbors thousands of bacterial taxa. A profusion of metagenomic sequence data has been generated from human stool samples in the last few years, raising the question of whether more taxa remain to be identified. We assessed metagenomic data generated by the Human Microbiome Project Consortium to determine if novel taxa remain to be discovered in stool samples from healthy individuals. To do this, we established a rigorous bioinformatics pipeline that uses sequence data from multiple platforms (Illumina GAIIX and Roche 454 FLX Titanium) and approaches (whole-genome shotgun and 16S rDNA amplicons) to validate novel taxa. We applied this approach to stool samples from 11 healthy subjects collected as part of the Human Microbiome Project. We discovered several low-abundance, novel bacterial taxa, which span three major phyla in the bacterial tree of life. We determined that these taxa are present in a larger set of Human Microbiome Project subjects and are found in two sampling sites (Houston and St. Louis). We show that the number of false-positive novel sequences (primarily chimeric sequences) would have been two orders of magnitude higher than the true number of novel taxa without validation using multiple datasets, highlighting the importance of establishing rigorous standards for the identification of novel taxa in metagenomic data. The majority of novel sequences are related to the recently discovered genus Barnesiella, further encouraging efforts to characterize the members of this genus and to study their roles in the microbial communities of the gut. A better understanding of the effects of less-abundant bacteria is important as we seek to understand the complex gut microbiome in healthy individuals and link changes in the microbiome to disease

    Development of a Tumor-Selective Approach to Treat Metastatic Cancer

    Get PDF
    BACKGROUND: Patients diagnosed with metastatic cancer have almost uniformly poor prognoses. The treatments available for patients with disseminated disease are usually not curative and have side effects that limit the therapy that can be given. A treatment that is selectively toxic to tumors would maximize the beneficial effects of therapy and minimize side effects, potentially enabling effective treatment to be administered. METHODS AND FINDINGS: We postulated that the tumor-tropic property of stem cells or progenitor cells could be exploited to selectively deliver a therapeutic gene to metastatic solid tumors, and that expression of an appropriate transgene at tumor loci might mediate cures of metastatic disease. To test this hypothesis, we injected HB1.F3.C1 cells transduced to express an enzyme that efficiently activates the anti-cancer prodrug CPT-11 intravenously into mice bearing disseminated neuroblastoma tumors. The HB1.F3.C1 cells migrated selectively to tumor sites regardless of the size or anatomical location of the tumors. Mice were then treated systemically with CPT-11, and the efficacy of treatment was monitored. Mice treated with the combination of HB1.F3.C1 cells expressing the CPT-11-activating enzyme and this prodrug produced tumor-free survival of 100% of the mice for >6 months (P<0.001 compared to control groups). CONCLUSIONS: The novel and significant finding of this study is that it may be possible to exploit the tumor-tropic property of stem or progenitor cells to mediate effective, tumor-selective therapy for metastatic tumors, for which no tolerated curative treatments are currently available
    corecore