1,323 research outputs found

    Immobilization of gluten in spherical matrices of food-grade hydrogels

    Get PDF
    The aim of this paper is to produce spherical encapsulates of wheat gluten in a food-grade biopolymer for preparing sheared meat analogs, to prevent instant fibrilization of the gluten during a pre-mixing step. The hydrogel should release the gluten inside the Couette Cell, as a result of the higher temperature and shear in the process. Both sodium alginate and κ-carrageenan were used as encapsulants. Spherical particles of hydrogel-gluten mixtures were produced by means of a dripping method using an encapsulator. While the particle properties of κ-carrageenan surpassed those of alginate in terms of controlled release of the core, the particle production using the encapsulator was more complicated. With κ-carrageenan, a layer of oil on top of the cross-linking bath fluid, as well as through the outer orifice of a concentric nozzle were required to obtain a good sphericity of the particles. For the alginate particles the use of oil was not necessary. Gluten loadings of 7% w/w were achieved with 1.5% w/w alginate and with 2% w/w κ-carrageenan. The water content of the particles can be easily controlled by a subsequent partial drying step. A mixture of Soy Protein Isolate and particles was sheared in the Couette Cell. Controlled release of the gluten from the alginate particles was not achieved properly by temperature or shear. The controlled release of the gluten was achieved at the processing conditions only with κ-carrageenan. Some fibrilization was observed in the sheared product, but the macrostructure was not yet well developed. However, an optimization of the shearing process for the use of the particles may lead to an improved structure for the meat analogs. Practical applications: This paper investigated the effect of encapsulation in hydrogels on the fibrilization behavior of wheat gluten upon contact with water. A cheap and easily scalable dripping technique was used to create spherical particles in which the gluten did not fibrilize, although the coating material consists of ≥95% of water. Upon reaching the process conditions in the shearing device, the gluten is released and able to form fibers. The results show that hydrogels can mechanically protect the core and act as a delivery structure. The protective and carrier functions of the hydrogel can alternatively be used for cores like food additives (e.g., vitamins) or even to pharmaceutical ingredients, not only for the production of meat analogs, but also in other food applications

    New physics searches with heavy-ion collisions at the CERN Large Hadron Collider

    Get PDF
    This document summarises proposed searches for new physics accessible in the heavy-ion mode at the CERN Large Hadron Collider (LHC), both through hadronic and ultraperipheral gamma gamma interactions, and that have a competitive or, even, unique discovery potential compared to standard proton-proton collision studies. Illustrative examples include searches for new particles-such as axion-like pseudoscalars, radions, magnetic monopoles, new long-lived particles, dark photons, and sexaquarks as dark matter candidates-as well as new interactions, such as nonlinear or non-commutative QED extensions. We argue that such interesting possibilities constitute a well-justified scientific motivation, complementing standard quark-gluon-plasma physics studies, to continue running with ions at the LHC after the Run-4, i.e. beyond 2030, including light and intermediate-mass ion species, accumulating nucleon-nucleon integrated luminosities in the accessible fb(-1) range per month.Peer reviewe

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)

    Particle-flow reconstruction and global event description with the CMS detector

    Get PDF
    The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions

    Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton–proton collisions at 13 TeV

    Get PDF
    info:eu-repo/semantics/publishe

    Evidence for the Higgs boson decay to a bottom quark–antiquark pair

    Get PDF
    info:eu-repo/semantics/publishe

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    info:eu-repo/semantics/publishe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore