775 research outputs found

    Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development

    Get PDF
    Lung alveolarization requires precise coordination of cell growth with extracellular matrix (ECM) synthesis and deposition. The role of extracellular matrices in alveogenesis is not fully understood, because prior knowledge is largely extrapolated from two-dimensional structural analysis. Herein, we studied temporospatial changes of two important ECM proteins, laminin and elastin that are tightly associated with alveolar capillary growth and lung elastic recoil respectively, during both mouse and human lung alveolarization. By combining protein immunofluorescence staining with two- and three-dimensional imaging, we found that the laminin network was simplified along with the thinning of septal walls during alveogenesis, and more tightly associated with alveolar endothelial cells in matured lung. In contrast, elastin fibers were initially localized to the saccular openings of nascent alveoli, forming a ring-like structure. Then, throughout alveolar growth, the number of such alveolar mouth ring-like structures increased, while the relative ring size decreased. These rings were interconnected via additional elastin fibers. The apparent patches and dots of elastin at the tips of alveolar septae found in two-dimensional images were cross sections of elastin ring fibers in the three-dimension. Thus, the previous concept that deposition of elastin at alveolar tips drives septal inward growth may potentially be conceptually challenged by our data

    JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers

    Get PDF

    Sub-lunar Tap-Yielding eXplorer, STYX

    Get PDF
    To diversify the idea pool that NASA has to draw from for future manned and unmanned missions to the Moon and Mars, a design/build competition has been posed to collegiate teams across the country. The challenge is to reach, extract, and purify underground ice reserves in a setting analogous to mars. Along the way, teams will be collecting telemetry to mimic prospecting objectives on the moon. The Sublunar Tap-Yielding eXplorer, STYX, is the team’s proposed design for the 2020 NASA RASC-AL competition. Some novel design features STYX will use are a rotary tool changer with swappable tools, a sleeve driving mode, and a pivoting heating probe. The STYX drill head will translate on two axes, use a rotary hammer drill to bore holes, sleeve boreholes with pipe to prevent collapse, and deliver water via a peristaltic pump and a two stage filtration system. Several of these design elements are innovative and conceptually proven through preliminary testing. These efforts are expected to net increased performance and differentiate STYX from other prototype submissions

    JNK signalling in cancer: In need of new, smarter therapeutic targets

    Get PDF
    Copyright © 2013 The British Pharmacological Society. This is the accepted version of the following article: Bubici, C. and Papa, S. (2014), JNK signalling in cancer: in need of new, smarter therapeutic targets. British Journal of Pharmacology, 171: 24–37, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/bph.12432/abstract.The JNKs are master protein kinases that regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival and death. It is increasingly apparent that persistent activation of JNKs is involved in cancer development and progression. Therefore, JNKs represent attractive targets for therapeutic intervention with small molecule kinase inhibitors. However, evidence supportive of a tumour suppressor role for the JNK proteins has also been documented. Recent studies showed that the two major JNK proteins, JNK1 and JNK2, have distinct or even opposing functions in different types of cancer. As such, close consideration of which JNK proteins are beneficial targets and, more importantly, what effect small molecule inhibitors of JNKs have on physiological processes, are essential. A number of ATP-competitive and ATP-non-competitive JNK inhibitors have been developed, but have several limitations such as a lack of specificity and cellular toxicity. In this review, we summarize the accumulating evidence supporting a role for the JNK proteins in the pathogenesis of different solid and haematological malignancies, and discuss many challenges and scientific opportunities in the targeting of JNKs in cancer.Kay Kendall Leukemia Fund, Italian Association for Cancer Research and Foundation for Liver Research

    Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are currently no accurate serum markers for detecting early risk of colorectal cancer (CRC). We therefore developed a non-targeted metabolomics technology to analyse the serum of pre-treatment CRC patients in order to discover putative metabolic markers associated with CRC. Using tandem-mass spectrometry (MS/MS) high throughput MS technology we evaluated the utility of selected markers and this technology for discriminating between CRC and healthy subjects.</p> <p>Methods</p> <p>Biomarker discovery was performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Comprehensive metabolic profiles of CRC patients and controls from three independent populations from different continents (USA and Japan; total <it>n </it>= 222) were obtained and the best inter-study biomarkers determined. The structural characterization of these and related markers was performed using liquid chromatography (LC) MS/MS and nuclear magnetic resonance technologies. Clinical utility evaluations were performed using a targeted high-throughput triple-quadrupole multiple reaction monitoring (TQ-MRM) method for three biomarkers in two further independent populations from the USA and Japan (total <it>n </it>= 220).</p> <p>Results</p> <p>Comprehensive metabolomic analyses revealed significantly reduced levels of 28-36 carbon-containing hydroxylated polyunsaturated ultra long-chain fatty-acids in all three independent cohorts of CRC patient samples relative to controls. Structure elucidation studies on the C28 molecules revealed two families harbouring specifically two or three hydroxyl substitutions and varying degrees of unsaturation. The TQ-MRM method successfully validated the FTICR-MS results in two further independent studies. In total, biomarkers in five independent populations across two continental regions were evaluated (three populations by FTICR-MS and two by TQ-MRM). The resultant receiver-operator characteristic curve AUCs ranged from 0.85 to 0.98 (average = 0.91 ± 0.04).</p> <p>Conclusions</p> <p>A novel comprehensive metabolomics technology was used to identify a systemic metabolic dysregulation comprising previously unknown hydroxylated polyunsaturated ultra-long chain fatty acid metabolites in CRC patients. These metabolites are easily measurable in serum and a decrease in their concentration appears to be highly sensitive and specific for the presence of CRC, regardless of ethnic or geographic background. The measurement of these metabolites may represent an additional tool for the early detection and screening of CRC.</p

    Measurement of nucleoside kinases in crude tissue extracts

    Full text link
    The measurements of deoxyadenosine kinase, adenosine kinase, and deoxycytidine kinase were examined in human placental cytosol to achieve a valid and reliable assay linear with time and protein. Our studies confirm the need to inhibit deaminase enzymes, since deoxyadenosine and deoxycytidine undergo extensive deamination and phosphorolysis. The use of a uniformly labeled nucleoside substrate introduced an artifact because the chromatographic behavior of the deoxyribose-1-phosphate, formed during the assay, was difficult to distinguish from the deoxynucleoside phosphate product. Accurate product identification was also essential. Finally, the substitution of GTP in place of ATP as the phosphate donor, the addition of a sulfhydryl reducing agent and a monovalent cation need to be considered when an assay is optimized.The use of these methods have lead to valid assays in placental cytosol that are linear with time and protein. Consideration of these important principles are necessary when establishing a valid and reliable nucleoside kinase assay in a crude tissue preparation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25142/1/0000578.pd

    Current dietetic practices of obesity management in Saudi Arabia and comparison with Australian practices and best practice criteria

    Get PDF
    Objective: To describe the dietetic practices of the treatment of obesity in Saudi Arabia and compare this with best practice criteria and the practice in Australia. Methods: Anonymous questionnaires were completed by dietitians in Saudi Arabia. The topics included barriers to obesity management, demand and level of service and strategies and approaches used for weight management. Best practice scores were based on those used to assess Australian dietitians. Results: 253 dietitians participated in the survey. Of these, 175 (69 %) were involved in the management of obesity. The best practice score for Australian dietitians was slightly but significantly greater than the scores of Saudi dietitians (mean 41.6 vs 38.8; p \u3c0.001), (median 43 vs 39). There was also a significant correlation between the best practice score and years of experience (r = 0.26, p \u3c0.001). The most common assessment approaches were assessment of BMI (87%) and exercise habits (81%) while the most common strategies for obesity management were; dietary total fat reduction (92%) and increase incidental daily activity (92%). The major barrier for establishment of a weight management clinic reported by 49% of participants was inadequate resources. Conclusion: Saudi Arabian dietetic practice for the management of obesity does incorporate most best practice recommendations, but some specific elements are rarely used

    New insights into the synergism of nucleoside analogs with radiotherapy

    Get PDF
    Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells
    corecore