12 research outputs found

    Transmission risk of COVID-19 in high school and college water polo

    Get PDF
    BACKGROUND: Concerns that athletes may be at a higher risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has led to reduced participation in sports during the COVID-19 pandemic. We aimed to assess COVID-19 incidence and transmission during the spring 2021 high school and college water polo seasons across the United States. METHODS: This prospective observational study enrolled 1825 water polo athletes from 54 high schools and 36 colleges. Surveys were sent to coaches throughout the season, and survey data were collected and analyzed. RESULTS: We identified 17 COVID-19 cases among 1223 high school water polo athletes (1.4%) and 66 cases among 602 college athletes (11.0%). Of these cases, contact tracing suggested that three were water polo-associated in high school, and none were water polo-associated in college. Quarantine data suggest low transmission during water polo play as only three out of 232 (1.3%) high school athletes quarantined for a water polo-related exposure developed COVID-19. In college, none of the 54 athletes quarantined for exposure with an infected opponent contracted COVID-19. However, in both high school and college, despite the physical condition of water polo athletes, both high school (47%) and college athletes (21%) had prolonged return to play after contracting COVID-19, indicating the danger of COVID-19, even to athletes. CONCLUSIONS: While COVID-19 spread can occur during water polo play, few instances of spread occurred during the spring 2021 season, and transmission rates appear similar to those in other settings, such as school environments

    Tibial Plateau Fracture Following Low Energy Fall in the Rocky Mountains

    Get PDF
    Tibial plateau fractures are debilitating injuries. They can occurin younger individuals who sustain a high energy trauma or, withincreasing age, lesser degrees of trauma and underlying bone pathology such as osteoporosis, metabolic bone disease, and malignancy.1Outside these cases, tibial plateau fractures are relatively uncommon.However, these fractures can occur in healthy patients who have sustained direct trauma to the knee.Fractures of the tibial plateau often are classified according to theSchatzker or AO classification systems.2,3 These systems evaluate theinvolvement of both the medial and lateral plateaus, degree of comminution, extension into the joint, and displacement (both articularsurfaces and the relationship of the diaphysis to the metaphysis).Most tibial plateau fractures occur in the lateral aspect of the tibialplateau.1 The increased frequency of lateral fractures is due to themedial tibial plateau being able to resist higher weight-bearing loaddue to the presence of more cancellous bone. More importantly, thelateral plateau has more articular surface exposed during extensioncompared to the medial plateau, which increases likelihood of injury.4The standard of care for most displaced tibial plateau fracturesis surgical management with open reduction and internal fixation(ORIF).5 Conservative management, such as leg bracing, is an optionfor fractures that are nondisplaced or in patients too fragile for surgical intervention. In the senior population, a total knee arthroplasty(TKA) is a less common option. Tibial plateau fractures, particularlymedial tibial plateau fractures, caused by direct trauma in the elderly,non-osteoporotic population are uncommon.We present the case of an active male without overt risk for severefracture (10-year fracture risk of 10% via FRAX score) who wasworking to repair a trail in the Rocky Mountains. While other injurieswere more likely given the mechanism of injury and patient risk, thiscase highlighted the importance of considering tibial plateau fracture,even in atypical settings without significant risk. Improved awarenessof this mechanism of injury will lead to more accurate diagnosis andgreater post-injury management

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Abstract: Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine. A systematic review of evidence, across the key pillars of prevention, diagnosis, treatment and prognosis, outlines milestones that need to be met to enable the broad clinical implementation of precision medicine in diabetes care

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p

    A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors

    No full text
    corecore