161 research outputs found

    VLT/SPHERE deep insight of NGC 3603's core: Segregation or confusion?

    Full text link
    We present new near-infrared photometric measurements of the core of the young massive cluster NGC 3603 obtained with extreme adaptive optics. The data were obtained with the SPHERE instrument mounted on ESO Very Large Telescope, and cover three fields in the core of this cluster. We applied a correction for the effect of extinction to our data obtained in the J and K broadband filters and estimated the mass of detected sources inside the field of view of SPHERE/IRDIS, which is 13.5"x13.5". We derived the mass function (MF) slope for each spectral band and field. The MF slope in the core is unusual compared to previous results based on Hubble space telescope (HST) and very large telescope (VLT) observations. The average slope in the core is estimated as -1.06^{+0.26}_{-0.26} for the main sequence stars with 3.5 Msun < M < 120 Msun.Thanks to the SPHERE extreme adaptive optics, 814 low-mass stars were detected to estimate the MF slope for the pre-main sequence stars with 0.6 Msun< M < 3.5 Msun , Gamma = -0.54^{+0.11}_{-0.11} in the K-band images in two fields in the core of the cluster. For the first time, we derive the mass function of the very core of the NGC 3603 young cluster for masses in the range 0.6 - 120 Msun. Previous studies were either limited by crowding, lack of dynamic range, or a combination of both

    Kinematic Analysis of a Protostellar Multiple System: Measuring the Protostar Masses and Assessing Gravitational Instability in the Disks of L1448 IRS3B and L1448 IRS3A

    Full text link
    We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations towards a compact (230~au separation) triple protostar system, L1448 IRS3B, at 879~\micron with \contbeam~resolution. Spiral arm structure within the circum-multiple disk is well resolved in dust continuum toward IRS3B, and we detect the known wide (2300~au) companion, IRS3A, also resolving possible spiral substructure. Using dense gas tracers, C17O, H13CO++, and H13CN, we resolve the Keplerian rotation for both the circum-triple disk in IRS3B and the disk around IRS3A. Furthermore, we use the molecular line kinematic data and radiative transfer modeling of the molecular line emission to confirm that the disks are in Keplerian rotation with fitted masses of 1.19−0.07+0.131.19^{+0.13}_{-0.07} for IRS3B-ab, 1.51−0.07+0.061.51^{+0.06}_{-0.07}~Msun for IRS3A, and place an upper limit on the central protostar mass for the tertiary IRS3B-c of 0.2~Msun. We measure the mass of the fragmenting disk of IRS3B to be 0.29~Msun from the dust continuum emission of the circum-multiple disk and estimate the mass of the clump surrounding IRS3B-c to be 0.07~Msun. We also find that the disk around IRS3A has a mass of 0.04~Msun. By analyzing the Toomre~Q parameter, we find the IRS3A circumstellar disk is gravitationally stable (Q>>5), while the IRS3B disk is consistent with a gravitationally unstable disk (Q<<1) between the radii 200-500~au. This coincides with the location of the spiral arms and the tertiary companion IRS3B-c, supporting the hypothesis that IRS3B-c was formed in situ via fragmentation of a gravitationally unstable disk

    Tracing the young massive high-eccentricity binary system Theta 1 Orionis C through periastron passage

    Get PDF
    The nearby high-mass star binary system Theta 1 Orionis C is the brightest and most massive of the Trapezium OB stars at the core of the Orion Nebula Cluster, and it represents a perfect laboratory to determine the fundamental parameters of young hot stars and to constrain the distance of the Orion Trapezium Cluster. Between January 2007 and March 2008, we observed T1OriC with VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry, as well as with bispectrum speckle interferometry with the ESO 3.6m and the BTA 6m telescopes (B'- and V'-band). Combining AMBER data taken with three different 3-telescope array configurations, we reconstructed the first VLTI/AMBER closure-phase aperture synthesis image, showing the T1OriC system with a resolution of approx. 2 mas. To extract the astrometric data from our spectrally dispersed AMBER data, we employed a new algorithm, which fits the wavelength-differential visibility and closure phase modulations along the H- and K-band and is insensitive to calibration errors induced, for instance, by changing atmospheric conditions. Our new astrometric measurements show that the companion has nearly completed one orbital revolution since its discovery in 1997. The derived orbital elements imply a short-period (P=11.3 yrs) and high-eccentricity orbit (e=0.6) with periastron passage around 2002.6. The new orbit is consistent with recently published radial velocity measurements, from which we can also derive the first direct constraints on the mass ratio of the binary components. We employ various methods to derive the system mass (M_system=44+/-7 M_sun) and the dynamical distance (d=410+/-20 pc), which is in remarkably good agreement with recently published trigonometric parallax measurements obtained with radio interferometry.Comment: 15 pages, 15 figures, accepted by A&

    Orbital Architectures of Planet-Hosting Binaries:I. Forming Five Small Planets in the Truncated Disk of Kepler-444A

    Get PDF
    We present the first results from our Keck program investigating the orbital architectures of planet-hosting multiple star systems. Kepler-444 is a metal-poor triple star system that hosts five sub-Earth-sized planets orbiting the primary star (Kepler-444A), as well as a spatially unresolved pair of M dwarfs (Kepler-444BC) at a projected distance of 1.8" (66 AU). We combine our Keck/NIRC2 adaptive optics astrometry with multi-epoch Keck/HIRES RVs of all three stars to determine a precise orbit for the BC pair around A, given their empirically constrained masses. We measure minimal astrometric motion (1.0±0.61.0\pm0.6 mas yr−1^{-1}, or 0.17±0.100.17\pm0.10 km s−1^{-1}), but our RVs reveal significant orbital velocity (1.7±0.21.7\pm0.2 km s−1^{-1}) and acceleration (7.8±0.57.8\pm0.5 m s−1^{-1} yr−1^{-1}). We determine a highly eccentric stellar orbit (e=0.864±0.023e=0.864\pm0.023) that brings the tight M dwarf pair within 5.0−1.0+0.95.0^{+0.9}_{-1.0} AU of the planetary system. We validate that the system is dynamically stable in its present configuration via n-body simulations. We find that the A−-BC orbit and planetary orbits are likely aligned (98%) given that they both have edge-on orbits and misalignment induces precession of the planets out of transit. We conclude that the stars were likely on their current orbits during the epoch of planet formation, truncating the protoplanetary disk at ≈\approx2 AU. This truncated disk would have been severely depleted of solid material from which to form the total ≈\approx1.5 MEarthM_{\rm Earth} of planets. We thereby strongly constrain the efficiency of the conversion of dust into planets and suggest that the Kepler-444 system is consistent with models that explain the formation of more typical close-in Kepler planets in normal, not truncated, disks.Comment: accepted to Ap

    Stability of self-gravitating discs under irradiation

    Full text link
    Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the strength of disc self-gravity, and can suppress it entirely if the disc is maintained above the threshold for linear instability. However, its impact on the susceptibility of the disc to fragmentation is less clear. We use two-dimensional numerical simulations to investigate the evolution of self-gravitating discs as a function of the local cooling time and strength of irradiation. In the regime where the disc does not fragment, we show that local thermal equilibrium continues to determine the stress - which can be represented as an effective viscous alpha - out to very long cooling times (at least 240 dynamical times). In this regime, the power spectrum of the perturbations is uniquely set by the effective viscous alpha and not by the cooling rate. Fragmentation occurs for cooling times tau < beta_crit / Omega, where beta_crit is a weak function of the level of irradiation. We find that beta_crit declines by approximately a factor of two, as irradiation is increased from zero up to the level where instability is almost quenched. The numerical results imply that irradiation cannot generally avert fragmentation of self-gravitating discs at large radii; if other angular momentum transport sources are weak mass will build up until self-gravity sets in, and fragmentation will ensue.Comment: MNRAS, in pres

    The VLA Nascent Disk And Multiplicity (VANDAM) Survey of Perseus Protostars. Resolving the Sub-Arcsecond Binary System in NGC 1333 IRAS2A

    Full text link
    We are conducting a Jansky VLA Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.4 cm) survey of all known protostars in the Perseus Molecular Cloud, providing resolution down to ∼\sim0.06'' and ∼\sim0.35" in Ka-band and C-band, respectively. Here we present first results from this survey that enable us to examine the source NGC 1333 IRAS2A in unprecedented detail and resolve it into a proto-binary system separated by 0.621"±\pm0.006" (∼\sim143 AU) at 8 mm, 1 cm, and 4 cm. These 2 sources (IRAS2A VLA1 and VLA2) are likely driving the two orthogonal outflows known to originate from IRAS2A. The brighter source IRAS2A VLA1 is extended perpendicular to its outflow in the VLA data, with a deconvolved size of 0.055" (∼\sim13 AU), possibly tracing a protostellar disk. The recently reported candidate companions (IRAS2A MM2 and MM3) are not detected in either our VLA data, CARMA 1.3 mm data, or SMA 850 μ\mum data. SMA CO (J=3→2J=3\rightarrow2), CARMA CO (J=2→1J=2\rightarrow1), and lower resolution CARMA CO (J=1→0J=1\rightarrow0) observations are used to examine the outflow origins and the nature of the candidate companions to IRAS2A VLA1. The CO (J=3→2J=3\rightarrow2) and (J=2→1J=2\rightarrow1) data show that IRAS2A MM2 is coincident with a bright CO emission spot in the east-west outflow, and IRAS2A MM3 is within the north-south outflow. In contrast, IRAS2A VLA2 lies at the east-west outflow symmetry point. We propose that IRAS2A VLA2 is the driving source of the East-West outflow and a true companion to IRAS2A VLA1, whereas IRAS2A MM2 and MM3 may not be protostellar.Comment: Accepted to ApJ, 27 pages, 6 Figures, 2 Table

    ATCA 3mm observations of NGC6334I and I(N): dense cores, outflows and an UCHII region

    Full text link
    Aims: Investigation of the dense gas, the outflows and the continuum emission from the massive twin cores NGC6334I and I(N) at high spatial resolution. Methods: We imaged the region with the Australia Telescope Compact Array (ATCA) at 3.4mm wavelength in continuum as well as CH3CN(5_K-4_K) and HCN(1-0) spectral line emission. Results: While the continuum emission in NGC6334I mainly traces the UCHII region, toward NGC6334I(N) we detect line emission from four of the previously identified dust continuum condensations that are of protostellar or pre-stellar nature. The CH3CN(5_K-4_K) lines are detected in all K-components up to energies of 128K above ground toward two protostellar condensations in both regions. We find line-width increasing with increasing K for all sources, which indicates a higher degree of internal motions closer to the central protostars. Toward the main mm and CH3CN source in NGC6334I we identify a velocity gradient approximately perpendicular to the large-scale molecular outflow. This may be interpreted as a signature of an accretion disk, although other scenarios, e.g., an unresolved double source, could produce a similar signature as well. No comparable signature is found toward any of the other sources. HCN does not trace the dense gas well but it is dominated by the molecular outflows. While the outflow in NGC6334I exhibits a normal Hubble-law like velocity structure, the data indicate a precessing outflow close to the plane of the sky for NGC6334I(N). Furthermore, we observe a wide (~15.4km/s) HCN absorption line, much broader than the previously observed CH3OH and NH3 absorption lines. Several explanations for the difference are discussed.Comment: 14 pages, 14 figures, accepted for A&

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item
    • …
    corecore