206 research outputs found

    Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    Get PDF
    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of T. muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 hours. Aged, ischemic mice showed altered plasma and brain cytokine responses while the lesion size correlated with plasma pre-stroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and up-regulation of both plasma interleukin-17alpha and tumor necrosis factor alpha levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. This article is protected by copyright. All rights reserved

    Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies

    Get PDF
    <p>Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.</p> <p>Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.</p> <p>Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.</p> <p>Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.</p&gt

    Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume

    Get PDF
    There is increasing evidence that inflammation plays an important role in the progression of acute ischemic stroke (AIS). The primary aims of this study were to examine the serum levels of 13 cytokines, C-reactive protein (CRP), glucose, and hemoglobin in AIS patients, and their relationship to stroke lateralization, type, and infarct volume. Forty-five patients with AIS were evaluated. Blood samples were taken within 72 h, and volumetric analyses performed within 1–7 days after AIS onset. Cytokines were measured in serum from all patients and from 40 control subjects using Luminex Bio-Plex XMap technology. The levels of interleukin (IL)-1ra (p < 0.001), IL-6 (p < 0.001), IL-8 (p < 0.001), IL-9 (p = 0.038), IL-10 (p = 0.001), IL-12 (p = 0.001), IL-18 (p < 0.001), and GRO-α (CXCL1) (p = 0.017) were significantly higher in the AIS patients than in the controls. The IL-8 level was significantly correlated with age in the patient group (r = 0.52, p < 0.001). None of the variables were found to be associated with stroke lateralization. Infarct volume was significantly positively correlated with CRP level (r = 0.47, p = 0.005). Patients with radiologically confirmed infarctions had significantly elevated serum levels of GRO-α (p = 0.023). The cytokine profile of the AIS patients supports not only earlier findings of a proinflammatory response but also early activation of endogenous immunosuppressive mechanisms. Novel findings of this study are elevated serum levels of IL-9 and GRO-α. Elevated GRO-α in AIS patients with radiologically confirmed infarctions suggests that GRO-α is specific for stroke of known etiology. Our results indicate that CRP plays an important role in the progression of cerebral tissue injury

    Cerebrospinal Fluid Dendritic Cells Infiltrate the Brain Parenchyma and Target the Cervical Lymph Nodes under Neuroinflammatory Conditions

    Get PDF
    BACKGROUND: In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However, there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we performed in vivo transfer experiments in rats suffering from experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester (CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral lymph nodes were assessed for the presence of microspheres(+) APCs or CFSE(+) DCs by immunohistology and/or FACS analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte glycoprotein, a major immunogenic myelin antigen. CONCLUSIONS/SIGNIFICANCE: Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the immune responses that develop within and outside the inflamed CNS

    Sex-differential genetic effect of phosphodiesterase 4D (PDE4D) on carotid atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphodiesterase 4D (PDE4D) gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT) and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis.</p> <p>Methods</p> <p>Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men). Genotype distribution was compared among the high-risk (plaque index ≥ 4), low-risk (index = 1-3), and reference (index = 0) groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls) with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect.</p> <p>Results</p> <p>In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034) for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008). For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032) for a thicker IMT at the common carotid artery compared with the (AA + AT) genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025) but not in women (p = 0.27).</p> <p>Conclusions</p> <p>The present study demonstrates a sex-differential effect of PDE4D on IMT, plaque index and stroke, which highlights its influence on various aspects of atherogenesis.</p

    Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production

    Get PDF
    BACKGROUND: As critical mediators of local and systemic inflammatory responses, cytokines are produced in the brain following ischaemic stroke. Some have been detected in the circulation of stroke patients, but their role and source is unclear. Focusing primarily on interleukin(IL)-1-related mechanisms, we serially measured plasma inflammatory markers, and the production of cytokines by whole blood, from 36 patients recruited within 12 h and followed up to 1 year after acute ischaemic stroke (AIS). RESULTS: Admission plasma IL-1 receptor antagonist (IL-1ra) concentration was elevated, relative to age-, sex-, and atherosclerosis-matched controls. IL-1β, soluble IL-1 receptor type II, tumour necrosis factor (TNF)-α, TNF-RII, IL-10 and leptin concentrations did not significantly differ from controls, but peak soluble TNF receptor type I (sTNF-RI) in the first week correlated strongly with computed tomography infarct volume at 5–7 days, mRS and BI at 3 and 12 months. Neopterin was raised in patients at 5–7 d, relative to controls, and in subjects with significant atherosclerosis. Spontaneous IL-1β, TNF-α and IL-6 gene and protein expression by blood cells was minimal, and induction of these cytokines by lipopolysaccharide (LPS) was significantly lower in patients than in controls during the first week. Minimum LPS-induced cytokine production correlated strongly with mRS and BI, and also with plasma cortisol. CONCLUSION: Absence of spontaneous whole blood gene activation or cytokine production suggests that peripheral blood cells are not the source of cytokines measured in plasma after AIS. Increased plasma IL-1ra within 12 h of AIS onset, the relationship between sTNF-RI and stroke severity, and suppressed cytokine induction suggests early activation of endogenous immunosuppressive mechanisms after AIS

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Get PDF
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Funding for collection, genotyping, and analysis of stroke samples was provided by Wellcome Trust Case Control Consortium-2, a functional genomics grant from the Wellcome Trust (DNA-Lacunar), the Stroke Association (DNA-lacunar), the Intramural Research Program of National Institute of Ageing (Massachusetts General Hospital [MGH] and Ischemic Stroke Genetics Study [ISGS]), National Institute of Neurological Disorders and Stroke (Siblings With Ischemic Stroke Study, ISGS, and MGH), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (MGH), Deane Institute for Integrative Study of Atrial Fibrillation and Stroke (MGH), National Health and Medical Research Council (Australian Stroke Genetics Collaborative), and Italian Ministry of Health (Milan). Additional support for sample collection came from the Medical Research Council, National Institute of Health Research Biomedical Research Centre and Acute Vascular Imaging Centre (Oxford), Wellcome Trust and Binks Trust (Edinburgh), and Vascular Dementia Research Foundation (Munich). MT is supported by a project grant from the Stroke Association (TSA 2013/01). HSM is supported by an NIHR Senior Investigator award. HSM and SB are supported by the NIHR Cambridge University Hospitals Comprehensive Biomedical Research Centre. VT and RL are supported by grants from FWO Flanders. PR holds NIHR and Wellcome Trust Senior Investigator Awards. PAS is supported by an MRC Fellowship. CML’s research is supported by the National Institute for Health Research Biomedical Research Centre (BRC) based at Guy's and St Thomas' NHS Foundation Trust and King's College London, and the BRC for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1212/WNL.000000000000226

    Association of the phosphodiesterase 4D (PDE4D) gene and cardioembolic stroke in an Australian cohort

    Get PDF
    Background: Large-scale epidemiological studies support an important role for susceptibility genes in the pathogenesis of ischemic stroke, with phosphodiesterase 4D identified as the first gene predisposing to ischemic stroke. Several single nucleotide polymorphisms within the phosphodiesterase 4D gene have been implicated in the pathogenesis of stroke. Aim: Undertake a multivariate analysis of six single nucleotide polymorphisms within the phosphodiesterase 4D gene in a previously defined Australian stroke cohort, to determine whether these single nucleotide polymorphisms have an association with ischemic stroke. Methods: This case–control study was performed using an existing genetic database of 180 ischemic stroke patients and 301 community controls, evaluated previously for cerebrovascular risk factors (hypertension, hypercholesterolemia, diabetes, paroxysmal atrial fibrillation, smoking and history of stroke in a first-degree relative). Based on previously reported associations with large vessel disease, ischemic stroke, cardioembolic stroke or a mixture of these, six single nucleotide polymorphisms in the phosphodiesterase 4D gene were selected for study, these being single nucleotide polymorphisms 13, 19, rs152312, 45, 83 and 87, based on previously utilized DeCODE nomenclature. Single nucleotide polymorphisms were genotyped using a sequence-specific polymerase chain reaction method and gel electrophoresis. Logistic regression was undertaken to determine the relevance of each polymorphism to stroke. Further analysis was undertaken to determine the risk of stroke following stratification for stroke sub-type and etiology. Results: Significant odds ratios were found to be associated with cardioembolic strokes in two single nucleotide polymorphisms: rs152312 and SNP 45 (P<0·05). Conclusions: Our findings demonstrated an association between cardioembolic stroke and phosphodiesterase 4D single nucleotide polymorphisms rs152312 and 45. No significant association was found for the other four single nucleotide polymorphisms investigated within the phosphodiesterase 4D gene. We propose that the results from this Australian population support the concept that a large prospective international study is required to investigate the role of phosphodiesterase 4D in the cardiogenic cause of ischemic stroke.Austin G. Milton, Verna M. Aykanat, M. Anne Hamilton-Bruce, Mark Nezic, Jim Jannes, Simon A. Kobla

    Consensus statements and recommendations from the ESO-Karolinska Stroke Update Conference, Stockholm 11–13 November 2018

    Get PDF
    The purpose of the European Stroke Organisation–Karolinska Stroke Update Conference is to provide updates on recent stroke therapy research and to give an opportunity for the participants to discuss how these results may be implemented into clinical routine. The meeting started 22 years ago as Karolinska Stroke Update, but since 2014 it is a joint conference with European Stroke Organisation. Importantly, it provides a platform for discussion on the European Stroke Organisation guidelines process and on recommendations to the European Stroke Organisation guidelines committee on specific topics. By this, it adds a direct influence from stroke professionals otherwise not involved in committees and work groups on the guideline procedure. The discussions at the conference may also inspire new guidelines when motivated. The topics raised at the meeting are selected by the scientific programme committee mainly based on recent important scientific publications. This year’s European Stroke Organisation–Karolinska Stroke Update Meeting was held in Stockholm on 11–13 November 2018. There were 11 scientific sessions discussed in the meeting including two short sessions. Each session except the short sessions produced a consensus statement (Full version with background, issues, conclusions and references are published as web-material and at www.eso-karolinska.org and http://eso-stroke.org) and recommendations which were prepared by a writing committee consisting of session chair(s), scientific secretary and speakers. These statements were presented to the 250 participants of the meeting. In the open meeting, general participants commented on the consensus statement and recommendations and the final document were adjusted based on the discussion from the general participants Recommendations (grade of evidence) were graded according to the 1998 Karolinska Stroke Update meeting with regard to the strength of evidence. Grade A Evidence: Strong support from randomised controlled trials and statistical reviews (at least one randomised controlled trial plus one statistical review). Grade B Evidence: Support from randomised controlled trials and statistical reviews (one randomised controlled trial or one statistical review). Grade C Evidence: No reasonable support from randomised controlled trials, recommendations based on small randomised and/or non-randomised controlled trials evidence
    corecore